Table 2. Reaction of Unsymmetrically Substituted Allylic Substratesa
entry
substrate
T
% convb
eec of unreacted substrate (R)d
eec of alkylated product (R)d
branched:linear product ratiob
1
2
3
4
5
5a
5a
5a
5a
6a
25
53
47
63
100
100
59
58
81
10
12
14
16
20
60:40
71:29
76:24
79:21
64:36
-30
-30
-30
-30
1
1
a All reactions performed with 5 mol % catalyst to substrate. b Determined by H NMR (CDCl3) of the quenched reaction mixture. c Determined by H
NMR chiral shift experiments with (+)-Eu(hfc)3. d Configuration assigned by comparison of sign of optical rotation with published values.
alcohol was not isolated in this case.19 Generally, successful
kinetic resolution of low molecular weight allylic alcohols
are conspicuous by their absence in reviews of the Sharpless
epoxidation.20 Hence, synthetic procedures for natural prod-
ucts often use alternatives, such as preparations from lactic
acid.21
This suggests that a viable alternative kinetic resolution
route to 3-buten-2-ol derivatives may be especially useful.22
Our results show that 3-buten-2-yl benzoate may be kineti-
cally resolved conveniently using the BINAP(S)/Pd system
(see Table 2).
Interestingly, the unsymmetrically substituted substrate
rac-5 exhibited an unusually high ratio of branched to linear
alkylation product. There are examples of other metal allyl
species (Mo, Rh, Ir) and achiral palladium catalysts providing
a high branched to linear product ratio; however, in most
palladium-catalyzed allylic alkylation reactions, the linear
alkylation product is observed predominantly.23-27
Alkylation of linear substrate 6 also proceeded with a
regiochemical preference for the branched alkylation product
but in a smaller ratio than when starting from substrate rac-
5. This phenomenon is termed a regiochemical memory
effect, whereby the position of the leaving group determines
the regiochemistry of the alkylated product to some extent.28-34
The observation of a regiochemical preference for the
branched product has generally been attributed to steric
effects in some cases and electronic effects in others. Larger
bite angles and steric crowding can produce a lower energy
transition state in the incipient formation of the less
encumbered terminal olefin bound to the metal when a
branched isomer is formed. Thus on rare occasions when
higher branched to linear ratios have been observed, they
are often with higher coordination number metals, such as
molybdenum35 or ruthenium.36,37 High branched to linear
ratios have also been observed with iridium38,39 and rho-
dium40,41 catalysis wherein Ir(III) and Rh(III) complexes are
produced upon oxidative addition and tend to be six-
coordinate; hence, steric factors can also be more important
in these systems than with Pd(II) complexes that tend to be
four-coordinate. Thus, when high branched to linear ratios
have been observed for palladium catalysis, they have often
been promoted by larger bite angle ligands.42-45 With
unsymmetrical ligands, in particular, electronic effects can
(29) Hayashi, T.; Kawatsura, M.; Uozumi, Y J. Am. Chem. Soc 1998,
120, 1681-1687.
(30) Lloyd-Jones, G. C.; Stephen, S. C. Chem.-Eur. J. 1998, 4, 2539-
2549.
(31) Lloyd-Jones, G. C.; Stephen, S. C.; Murray, M.; Butts, C. P.;
Vyskocil, S.; Kocovsky, P. Chem.-Eur. J. 2000, 6, 4348.
(32) Lloyd-Jones, G. C. Synlett 2001, 161.
(19) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.;
Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
(20) Chandrasekhar, S.; Reddy, C. R. Tetrahedron: Asymmetry 2002,
13, 261.
(21) Johnson, R. A.; Sharpless, K. B. Catalytic Asymmetric Epoxidation
of Allylic Alcohols. In Catalytic Asymmetric Synthesis; Ojima, I, Ed.; VCH
Publishers: New York, 1993.
(22) (a) Wood, J. L.; Stoltz, B. M.; Dietrich, H. J.; Pflum, D. A.; Petsch,
D. T. J. Am. Chem. Soc. 1997, 119, 9641. (b) Klingler, F. D.; Psiorz, M.
German patent DE-4219510-C1, 1993.
(33) Fairlamb, I. J. S.; Lloyd-Jones, G. C.; Stepan, V.; Kocovsky, P.
Chem.-Eur. J. 2002, 8, 4443.
(34) Faller, J. W.; Sarantopoulos, N. Organometallics 2004, 23, in press.
(35) Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104-
1105.
(36) Trost, B. M.; Fraisse, P. L.; Ball, Z. T., Angew. Chem., Int. Ed.
2002, 41, 1059-1061.
(37) Mbaye, M. D.; Demerseman, B.; Renaud, J. L.; Toupet, L.; Bruneau,
C. Angew. Chem., Int. Ed. 2003, 42, 5066.
(38) Takeuchi, R. Synlett 2002, 1954.
(23) Robinson, D.; Bull, S. D. Tetrahedron: Asymmetry 2003, 14, 1407.
(24) Sato, Y.; Yoshino, T.; Mori, M. Org. Lett. 2003, 5, 31.
(25) Sjogren, M. P. T.; Hansson, S.; Akermark, B.; Vitagliano, A.
Organometallics 1994, 13, 1963.
(26) You, S. L.; Zhu, X. Z.; Luo, Y. M.; Hou, X. L.; Dai, L. X. J. Am.
Chem. Soc. 2001, 123, 7471.
(27) Acemoglu, L.; Williams, J. M. J. AdV. Synth. Catal. 2001, 343, 75.
(28) Blacker, A. J.; Clarke, M. L.; Loft, M. S.; Williams, J. M. J. Org.
Lett. 1999, 1, 1969.
(39) Lipowsky, G.; Helmchen, G. Chem. Commun. 2004, 116.
(40) Takeuchi, R.; Kitamura, N. New J. Chem. 1998, 22, 659.
(41) Evans, P. A.; Kennedy, L. J. Org. Lett. 2000, 2, 2213.
(42) Kamer, P. C. J.; van Leeuwen, P. W. N.; Reek, J. N. H. Acc. Chem.
Res. 2001, 34, 895.
(43) Pretot, R.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 323.
(44) Hilgraf, R.; Pfaltz, A. Synlett 1999, 1814.
(45) You, S. L.; Zhu, X. Z.; Luo, Y. M.; Hou, X. L.; Dai, L. X., J. Am.
Chem. Soc. 2001, 123, 7471.
Org. Lett., Vol. 6, No. 8, 2004
1303