MPcs Catalyzed Nitro Reduction
18. Edwards JP, Zhi L, Pooley CLF, Tegley CM, West SJ, Wang
MW, Gottardis MM, Pathirana C, Schrader WT, Jones TK (1998)
J Med Chem 41:2779
19. Neidlein R, Christen D (1986) Helv Chim Acta 69:1623
20. Liu Y, Lu Y, Prashad M, Repic O, Blacklock TJ (2005) Adv
Synth Catal 347:217
21. Corma A, Conceptcion P, Serna P (2007) Angew Chem Int Ed
46:7266
22. He L, Wang LC, Sun H, Ni J, Cao Y, He HY, Fan KN (2009)
Angew Chem Int Ed 48:9538
23. Corma A, Serna P (2006) Science 313:332
24. Corma A, Serna P, Garcia H (2007) J Am Chem Soc 129:6358
25. Park S, Lee IS, Park J (2013) Org Biomol Chem 11:395
26. Mitsudome T, Kaneda K (2013) Green Chem 15:2636
27. Zhang Y, Cui X, Shi F, Deng Y (2012) Chem Rev 112:2467
28. Stratakis M, Garcia H (2012) Chem Rev 112:4469
29. Gkizis PL, Stratakis M, Lykakis IN (2013) Catal Commun 36:48
30. Lipowitz J, Bowman SA (1973) J Org Chem 38:162
31. Jovel I, Golomba L, Fleisher M, Popelis J, Grinberga S, Lukevics
E (2004) Chem Heterocycl Comp 40:701
compounds using Ph2SiH2 and NaBH4 as reducing agents.
Notably, the two methods are applicable to various aro-
matic and heteroaromatic nitro compounds tolerating a
large number of functional groups such as halo, cyano,
acetyl, amide, sulphonamide, hydroxyl, methoxy, ester,
phenyl and carboxylic acid etc. Such functional group
tolerance might omit the use of protecting groups for the
synthesis of large complex molecules. Furthermore, present
methods are highly regioselective for the reduction of
dinitrobenzenes. The other remarkable advantages of the
methods include recyclability of catalysts, no use of base or
ligands like phosphines, gram scale applicability, high
stability of catalysts, easy workup, high isolated yields and
green solvent system.
Acknowledgments Authors are grateful to Director of the institute
for providing necessary facilities. Financial support received from
CSIR-India (fellowship to P. K. V) and DST under Fast Track
Scheme (U. S.) is gratefully acknowledged.
32. Rahaim Jr RJ, Maleczka Jr. RE (2006) Synthesis 3316
33. Rahaim RJ Jr, Maleczka RE Jr (2005) Org Lett 7:5087
34. Banik BK, Mukhopadhyay C, Venkatraman MS, Becker FF
(1998) Tetrahedron Lett 39:7243
35. Yu C, Liu B, Hu L (2001) J Org Chem 66:919
36. Basu MK, Becker FF, Banik FF (2000) Tetrahedron Lett 41:5603
37. Spencer J, Anjum N, Patel H, Rathnam RP, Verma J (2007)
Synlett 2557
References
38. Spencer J, Rathnam RP, Patel H, Anjum N (2008) Tetrahedron
64:10195
1. Rylander PN (1985) Hydrogenation Methods. Academic Press,
London 104
39. de Noronha RG, Romao CC, Fernandes AJ (2009) J Org Chem
74:6960
40. Andrianov KA, Sidorov VI, Filimonov MI (1977) Zh Obshch
Khim 47:485
41. Brinkman HR, Miles WH, Hilborn MD, Smith MC (1996) Synth
Commun 26:973
42. Fan GY, Zhang L, Fu HY, Yuan ML, Li RX, Chen H, Li XJ
(2010) Catal Commun 11:451
43. Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed
47:3317
44. Gaillard S, Renaud JL (2008) ChemSusChem 1:505
45. Junge K, Wendt B, Shaikh N, Beller M (2010) Chem Commun
46:1769
2. Nishimura S (2001) Handbook of Heterogeneous Catalytic
Hydrogenation for Organic Synthesis. Wiley, Chichester 315
3. Adams JP, Paterson JR (2000) J Chem Soc Perkin Trans 1:3695
4. Kabalka GW, Verma RS (1992) In: Comprehensive Organic
Synthesis. Pergamon, Oxford 363
5. Dale DJ, Dunn PJ, Golighty C, Hughes ML, Levett PC, Pearce AK,
Searle PM, Ward G, Wood AS (2000) Org Process Res Dev 4:17
6. Brickner SJ, Hutchinson DK, Barbachyn MR, Manninen PR,
Ulanowicz DA, Garmon SA, Grega KC, Hendges SK, Toops DS,
Ford CW, Zurenko GE (1996) J Med Chem 39:673
7. Al-Farhan E, Deininger DD, McGhie S, Callaghan JO, Robertson
MS, Rodgers K, Rout SJ, Singh H, Tung RD (1999) PCT Int.
Appl. WO99/48885
46. Pehlivan L, Metay E, Laval S, Dayoub W, Demonchaux P,
Mignani G, Lemaire M (2011) Tetrahedron 67:1971
47. Cantillo D, Baghbanzadeh M, Kappe CO (2012) Angew Chem
Int Ed 51:10190
48. Wienhofer G, Sorribes I, Boddien A, Westerhaus F, Junge K,
Junge H, Llusar R, Beller M (2011) J Am Chem Soc 133:12875
49. Shi Q, Lu R, Lu L, Fu X, Zhao D (2007) Adv Synth Catal
349:1877
50. Plietker B (2008) Iron catalysis in organic chemistry. Wiley-
VCH, Weinheim
51. Nahra F, Mace Y, Lambin D, Riant O (2013) Angew Chem Int
Ed 52:3208
8. Prasad A, Sharma ML, Kanwar S, Rathee R, Sharma SD (2005)
J Sci Ind Res 64:756
9. Blaser HU, Siegrist U, Studer M (2001) In: Fine chemicals
through heterogenous catalysis. Wiley-VCH, Weinheim 389
10. Blaser HU, Steiner H, Studer M (2009) ChemCatChem 1:210
11. Corma A, Serna P, Concepcion P, Calvino J (2008) J Am Chem
Soc 130:8748
12. Doxsee KM, Feigel M, Stewart KD, Canary JW, Knobler CB,
Cram DJ (1987) J Am Chem Soc 109:3098
13. Tormo J, Hays DS, Fu GC (1998) J Org Chem 63:5296; c)
Zhou Y, Li J, Liu H, Zhao Z, Jiang H (2006). Tetrahedron Lett
47:8511
52. Wang DS, Wang DW, Zhou YG (2011) Synlett 947
53. Bae JW, Cho YJ, Lee SH, Yoon COM, Yoon CM (2000) Chem
Commun 1857
54. Franzoni I, Mazet C (2014) Org Biomol Chem 12:233
55. Chen QA, Ye ZS, Duan Y, Zhou YG (2013) Chem Soc Rev 42:497
56. Sorokin AB (2013) Chem Rev 13:8152
14. Sharma U, Kumar P, Kumar N, Kumar V, Singh B (2010) Adv
Synth Catal 352:1834
15. Sahiner N, Ozay H, Ozay O, Aktas N (2010) Appl Catal B Env
101:137
16. Matthews JM, Greco MN, Hecker LR, Hoekstra WJ, Rade-Gor-
don P, de Garavilla L, Demarest KT, Ericson K, Gunnet KW,
Hageman W, Look R, Moore JB, Maryanoff BE (2003) Bioorg
Med Chem Lett 13:753
57. Verma PK, Sharma U, Bala M, Kumar N, Singh B (2013) RSC
Adv 3:895
58. Sharma U, Kumar N, Verma PK, Kumar V, Singh B (2012)
Green Chem 14:2289
17. Kim Y, Nam NH, You YJ, Ahn BZ (2002) Bioorg Med Chem
Lett 12:719
123