5082
N. Nowrouzi, M. Zareh Jonaghani / Tetrahedron Letters 52 (2011) 5081–5082
Table 1
aromatic compounds along with diphenylphosphinic acid as
shown in Scheme 2.
Nitration of aromatic compounds using Ph2PCl/I2/AgNO3 in CH2Cl2 at room
temperature
Inthisreaction, thesilversaltis recoveredbyfiltrationofthereac-
tion mixture. In a typical experiment: to a flask containing a stirred
mixture of Ph2PCl (1.1 mmol, 0.202 mL) and I2 (1.1 mmol, 0.279 g) in
CH2Cl2 (5 mL), was added silver nitrate (2.2 mmol, 0.373 g) at room
temperature. N,N-Dimethylaniline (2.0 mmol, 0.252 mL) was then
added to the reaction mixture. After 10 min, the mixture was filtered
to remove precipitated AgCl and AgI. The residue was washed with
saturated aqueous Na2CO3 (3 Â 5 mL) until all the diphenylphosphi-
nic acid was removed from the organic phase. The aqueous phase
was separated and the organic phase washed with aqueous Na2S2O3
(2 Â 5 mL) to remove the excess I2 and then H2O (5 mL), dried, and
concentrated. Column chromatography of the residue was per-
formed on silica gel using n-hexane/EtOAc (4:1) as eluent to give
pure 2-nitro- and 4-nitro-N,N-dimethylanilines in 15% and 77%
yields, respectively. 4-Nitro-N,N-dimethylaniline: IR (KBr) 800,
Entry
1
Aromatic compound
Anisole
Time
Yielda (%)
35 min
ortho: 19
para: 70
2-Nitro: 75
ortho: 20
para: 66
3-Nitro: 92
ortho: 15
para: 77
1-Nitro: 80
9-Nitro: 88
ortho: 10
para: 57
—
2
3
4-Iodoanisole
Toluene
4 h
1 h
4
5
Indole
N,N-Dimethylaniline
20 min
10 min
6
7
8
Naphthalene
Anthracene
Iodobenzene
4 h
3.5 h
24 h
9
10
11
12
Chlorobenzene
Bromobenzene
Cyanobenzene
Phenol
24 h
24 h
24 h
20 min
—
—
ortho: 35
para: 56
2-Nitro: 80
4-Nitro: 72
2-Nitro: 80
2-Nitro: 94
2-Nitro: 95
2-Nitro: 90
1300, 1350, 1500, 1525, 1600, 2900–3000 cmÀ1
;
1H NMR
(250 MHz, CDCl3): d (ppm) 2.89 (6H, s), 6.32 (2H, d, J = 8.4), 7.8
(2H, d, J = 8.4); 13C NMR (62.9 MHz, CDCl3): d (ppm) 30.2, 110.5,
126.4, 138.0, 154.4.
13
14
15
16
17
18
4-Nitrophenol
2-Nitrophenol
4-Bromophenol
p-Cresol
4-Ethylphenol
4-Methoxyphenol
5.5 h
6 h
5 h
5 min
5 min
5 min
In conclusion, we have demonstrated the ability of the reagent
system, Ph2PCl/I2/AgNO3 to perform nitration of aromatic com-
pounds under essentially neutral conditions. Application of this re-
agent system allows for nitration of acid-sensitive substrates
compared to traditional methods. In addition, experimental sim-
plicity, readily available reagents, easy handling, and absence of
di-nitrated and poly-nitrated products are other advantages of
our system.
a
Isolated yield.
I
I
2 AgNO3
Ph2PCl
I2
Ph2P
+
Cl
- AgCl
- AgI
I
Acknowledgment
Ph
I
2 ArNO2
+
Ph2P(O)OH
We thank the Persian Gulf University Research Council for gen-
erous partial financial support of this study.
P
O2N
O
O NO2
Ph
ArH
Scheme 2.
ArH
II
References and notes
1. (a) Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration: Methods and Mechanisms;
VCH: New York, 1989; (b) Schofield, K. Aromatic Nitration; University Press:
Cambridge, 1980; (c) Esakkidurai, T.; Pitchumani, K. J. Mol. Catal. A: Chem. 2002,
185, 305.
under different conditions.7 Here, treatment of phenol under
similar conditions to those described above gave the corresponding
nitro derivatives in excellent yields. Phenols with electron-
donating or electron-withdrawing groups also reacted smoothly
under mild conditions to afford the expected products in good to
excellent yields.
However, lower yields and longer reaction times were observed
when using phenols bearing electron-withdrawing groups on the
phenyl moiety. For example, quantitative nitration of p-cresol
required 5 min, while p-nitrophenol was nitrated in 5.5 h. In
addition to the electronic effects, steric factors also affected the
reaction in terms of time and yield. Comparison of entries 13 and
14 indicated that the presence of an ortho substituent on the phenol
ring decreased slightly the yield and increased the reaction time.
A possible mechanism for this reaction is shown in Scheme 2.
Treatment of Ph2PCl with I2 forms intermediate I. Addition of
AgNO3 produces the intermediate II which is accompanied by the
precipitation of AgCl and AgI. This reactive intermediate then
reacts with the aromatic ring to produce the corresponding nitro
2. Ward, E. R. Chem. Ber. 1979, 15, 297.
3. (a) Smith, M. B.; March, J. March’s Advanced Chemistry, 5th ed.; John Wiley: New
York, 2001. p 696; (b) Sparks, A. K. J. Org. Chem. 1966, 31, 2299; (c) Crivello, J. V. J.
Org. Chem. 1981, 46, 3056; (d) Bak, R. R.; Smallridge, A. J. Tetrahedron Lett. 2001,
42, 6767; (e) Olah, G. A.; Narang, S. C.; Olah, J. A.; Pearson, R. L.; Cupas, C. A. J. Am.
Chem. Soc. 1980, 102, 3507; (f) Mellor, J. M.; Mittoo, S.; Parkes, R.; Millar, R. W.
Tetrahedron 2000, 56, 8019; (g) Parac-Vogt, T. N.; Binnemans, K. Tetrahedron Lett.
2004, 45, 3137; (h) Ramana, M. M. V.; Malik, S. S.; Parihar, J. A. Tetrahedron Lett.
2004, 45, 8681; (i) Muathen, H. A. Molecules 2003, 8, 593; (j) Shokrolahi, A.; Zali,
A.; Keshavarz, M. H. Chin. Chem. Lett. 2007, 18, 1064.
4. (a) Firouzabadi, H.; Iranpoor, N.; Zolfigol, M. A. Synth. Commun. 1997, 27, 3301;
(b) Suzuki, H.; Takeuchi, T.; Mori, T. J. Org. Chem. 1996, 81, 5944; (c) Riego, J. M.;
Sedin, Z.; Zaldivar, J. M.; Marziano, N. C.; Tortato, C. Tetrahedron Lett. 1996, 37,
513.
5. (a) Tasneem, T.; Ali, M. M.; Rajanna, K. C.; Saiparakash, P. K. Synth. Commun.
2001, 31, 1123; (b) Sana, S.; Tasneem, T.; Ali, M. M.; Rajanna, K. C.; Saiparakash,
P. K. Synth. Commun. 2009, 39, 2949; (c) Hajipour, A. R.; Ruoho, A. E. Tetrahedron
Lett. 2005, 46, 8307; (d) Olah, G. A.; Reddy, V. P.; Prakash, G. K. S. Synthesis 1992,
1087.
6. Samajdar, S.; Becker, F. F.; Banik, B. K. Tetrahedron Lett. 2000, 41, 8017.
7. (a) Zolfigol, M. A.; Ghaemi, E.; Madrakian, E. Synlett 2003, 191; (b) Zolfigol, M. A.;
Madrakian, E.; Ghaemi, E. Synlett 2003, 2222; (c) Rajagopal, R.; Srinivasan, K. V.
Ultrason. Sonochem. 2003, 10, 41; (d) Iranpoor, N.; Firouzabadi, H.; Heydari, R.
Phosphorus, Sulfur Silicon Relat. Elem. 2003, 178, 1027.