5384 Chem. Mater., Vol. 22, No. 18, 2010
Bromberg et al.
The mechanism of the ester hydrolysis catalysis by low-
molecular-weight imidazole derivatives is a function of the
ester (substrate) structure.20-26 Esters that possess poor
leaving groups are subject to classical general base catalysis
by imidazole, whereas esters with good leaving groups are
subject to nucleophilic catalysis.20 In polymers and colloidal
assemblies, the activity of the imidazole group (much like in
enzymes), depends on its microenvironment such as the
presence of hydrophobic or hydrophilic moieties, as well as
other imidazole groups, in its proximity.19 In that regard, we
were interested in potential neighboring effects of the imida-
zole groups concentrated in the organic shell, on esterolytic
reactions. It has been shown that self-assembling monolayers
of various ligands form a multitude of patterns on the NP
surfaces, which affect the microenvironment of the ligands
and hence the NP solvation and its interaction with
substrates.27 The confinement of the catalytic units to
the monolayer covering the NP triggers a cooperative,
pH-dependent hydrolytic mechanism in which an imida-
zolium ion acts as a catalyst.28-30
Noting the widespread use of fatty acids as steric and
electrostatic stabilizers for the colloidal stability of
NPs,31,32 in the present work, we created functional fatty
acid-imidazole conjugates for the NP surface modifica-
tion. Because oleic acid is strongly surface-active and pos-
sesses a reactive unsaturated bond, we concentrated on its
use for conjugating with imidazole derivatives, along with
its epoxidized derivative, trans-9,10-epoxystearic acid.
Thiol-ene coupling reactions involving the double bond
of oleic acid and its esters are known.33 Commercially
available derivatives of imidazole such as 2-mercaptoimi-
dazole and 4(5)-imidazoledithiocarboxylic acid were cho-
sen for conjugation with oleic acid and its derivative.
2-Mercaptoimidazole is a reactive, neutral nucleophile
(pKa of the thiol group ionization, 11.6)34,35 capable of
participating in thiol-ene reactions,35,36 which are facili-
tated by the relatively low S-H bond dissociation energy,
and even more readily, in conjugation reactions with
epoxy groups.37 2-Mercaptoimidazole is also a bioactive
metal-complexing agent.38-43 Likewise, the reactivity of
the dithio group and metal-chelating capability of the
dithio and imidazole functionalities in 4(5)-imidazole-
dithiocarboxylic acid have made it a building block for
synthesis of various metal-organic compounds, func-
tional polymers, and metal ion adsorbents.44-48
Testing of the hydrolytic activity of the ligands and
nanoparticles was performed using the insecticide para-
oxon as a substrate. Hydrolysis of paraoxon and analo-
gous OP pesticides catalyzed by metal ions,49 micelles of
nucleophilic surfactants, and metallomicelles50-52 and
enzymes53,54 has been studied in detail and such hydro-
lysis represents a convenient reaction reflecting upon the
activity of the catalytic agent used. Although the hydro-
lysis of paraoxon is of practical importance in its own
right from an environmental standpoint,49 it can also
serve as a mechanistic model of degradation of more toxic
warfare agents. We chose cobalt and silver to be the cores
of our NPs, as their synthesis and detection are well-
established,55,56 yet fatty acids are capable of binding
(35) Carlsson, J.; Kierstan, M. P. J.; Brocklienhurst, K. Biochem. J.
1974, 139, 221–235.
(36) Persson, J. C.; Jannasch, P. Macromolecules 2005, 38, 3283–3289.
(37) Schwarz, A.; Wilchek, M. U.S. Patent 5 719 269, February 17,
1998.
(38) Tweit, R. C.; Kreider, E. M.; Muir, R. D. J. Med. Chem. 1973, 16,
1161–1169.
(39) Roser, K. S.; Brookes, P. S.; Wojtovich, A. P.; Olson, L. P.; Shojaie,
J.; Parton, R. L.; Anders, M. W. Bioorg. Med. Chem. 2010, 18,
1441–1448.
(40) Van Lommen, G.; Doyon, J.; Coesemans, E.; Boeckx, S.; Cools,
M.; Buntinx, M.; Hermans, B.; VanWauwe, J. Bioorg. Med. Chem.
Lett. 2005, 15, 497–500.
ꢀ
ꢀ
(41) Alvarez-Bustamante, R.; Negron-Silva, G.; Abreu-Quijano, M.;
(15) Overberger, C. G.; Morimoto, M. J. Am. Chem. Soc. 1971, 93,
3222–3228.
(16) Kitano, H.; Sun, Z. H.; Isa, N. Macromolecules 1983, 16, 1306–
1310.
(17) Kunitake, T.; Shinkai, S. J. Am. Chem. Soc. 1971, 93, 4256–4263.
(18) Kunitake, T.; Shimada, F.; Aso, C. J. Am. Chem. Soc. 1969, 91,
2716–2723.
(19) Suh, J.; Oh, S. J. Org. Chem. 2000, 65, 7534–7540.
(20) Kirsch, J. F.; Jencks, W. P. J. Am. Chem. Soc. 1964, 86, 837.
(21) Rogers, G. A.; Bruice, B. C. J. Am. Chem. Soc. 1974, 96, 2463–2473.
(22) Pollack, R. M.; Dumsha, T. C. J. Am. Chem. Soc. 1975, 97, 377.
(23) Kunitake, T.; Ihara, H.; Okahata, Y. J. Am. Chem. Soc. 1983, 105,
6070.
(24) Mallick, I. M.; D’Souza, V. T.; Yamaguchi, M.; Lee, T.; Chalabi,
P.; Gadwood, R. C.; Bencer, M. L. J. Am. Chem. Soc. 1984, 106,
7252.
(25) Ohkubo, K.; Uranbe, K.; Yamamoto, J.; Sagawa, T.; Usui, S. J.
Chem. Soc., Perkin Tran. 11995, 2957.
(26) Broo, K. S.; Nilsson, H.; Flodberg, A.; Baltzer, L. J. Am. Chem.
Soc. 1998, 120, 4063.
(27) Centrone, A.; Penzo, E.; Sharma, M.; Myerson, J. W.; Jackson,
A. M.; Marzari, N.; Stellacci, F. Proc. Natl. Acad. Sci. U.S.A. 2008,
105(29), 9886–9891.
ꢀ
ꢀ
Herrera-Hernandez, H.; Romero-Romo, M.; Cuan, A.; Palomar-
ꢀ
Pardave, M. Electrochim. Acta 2009, 54(30), 5393–5399.
(42) Ryan, N. T.; Richert, D. A.; Westerfeld, W. W.; Fujishima, M.;
Matsuo, Y.; Takatori, H.; Uchida, K. Electrochem. Commun. 2008,
10, 1482–1485.
(43) Dias Filho, N. L.; Gushikem, Y. Sep. Sci. Technol. 1997, 32, 2535–
2545.
(44) Sawa, N., Saeki, T. Imidazole 4(5)-dithiocarboxylic acids or salts,
U.S. Patent 4 394 511, Jul 19, 1983.
(45) Ma, C.; Han, Y.; Zhang, R. Inorg. Chim. Acta 2005, 358, 3084–
3092.
(46) Carter, S.; Hunt, B.; Rimmer, S. Macromolecules 2005, 38, 4595–
4603.
(47) Carter, S.; Rimmer, S.; Rutkaite, R.; Swanson, L.; Fairclough,
J. P. A. Biomacromolecules 2006, 7, 1124–1130.
(48) Grigoropoulou, G.; Stathi, P.; Karakassides, M. A.; Louloudi, M.;
Deligiannakis, Y. Colloids Surf., A: Physicochem. Eng. Aspects 2008,
320, 25–35.
(49) Smolen, J. M; Stone, A. T. Environ. Sci. Technol. 1997, 31, 1664–
1673.
(50) Moss, R. A.; Kanamathareddy, S.; Vijayaraghavan, S. Langmuir
2001, 17, 6108–6111.
(51) Morales-Rojas, H.; Moss, R. A. Chem. Rev. 2002, 102, 2497–2522.
(52) Fubin, J.; Fubin, J.; Bingying, J.; Bingying, J.; Xiaoqi, Y.; Xiancheng,
Z. Langmuir 2002, 18, 6769–6774.
(53) Lei, Y.; Mulchandani, A.; Chen, W. Biotechnol. Prog. 2005, 21,
678–681.
(54) Richter, R. J.; Jarvik, G. P.; Furlong, C. E. Toxicol. Appl. Phar-
(28) Lucarini, M.; Franchi, P.; Pedulli, G. F.; Pengo, P.; Scrimin, P.;
Pasquato, L. J. Am. Chem. Soc. 2004, 126, 9326–9329.
(29) Pasquato, L.; Rancan, F.; Scrimin, P.; Mancin, F.; Frigeri, C.
Chem. Commun. 2000, 2253–2254.
(30) Pengo, P.; Polizzi, S.; Pasquato, L.; Scrimin, P. J. Am. Chem. Soc.
2005, 127, 1616–1617.
(31) Yin, Y.; Alivisatos, A. P. Nature 2004, 437, 664–670.
(32) Harada, T.; Hatton, T. A. Langmuir 2009, 25, 6407–6412.
(33) Samuelsson, J.; Jonsson, M.; Brinck, T.; Johansson, M. J. Polym.
Sci., Part A: Polym. Chem. 2004, 42, 6346–6352.
(34) Stanovnik, B.; Tisler, M. Anal. Biochem. 1964, 9, 68–74.
macol. 2009, 235, 1–9.
(55) Mulfinger, L.; Solomon, S. D.; Bahadory, M.; Jeyarajasingam,
A. V.; Rutkowsky, S. A.; Boritz, C. J. Chem. Educ. 2007, 84, 322.
(56) Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science 2001, 291
(5511), 2115–2117.