Journal of Materials Chemistry B
Paper
that the maximum enzymolysis velocity declined with the
increasing concentration of theophylline, whereas the Michae-
lis constant barely changed. This corresponds to the charac-
teristics of noncompetitive inhibition and demonstrates that
8 E. Ranjbakhsh, A. K. Bordba, M. Abbasi, A. R. Khosropour
and E. Shams, Chem. Eng. J., 2012, 179, 272–276.
9 H. M. Chen, S. S. Liu, H. L. Yang, Y. Mao, C. H. Deng,
X. M. Zhang and P. Y. Yang, Proteomics, 2010, 10, 930–939.
theophylline is a noncompetitive inhibitor for ALP. The Line- 10 S. Lin, D. Yun, D. W. Qi, C. H. Deng, Y. Li and X. M. Zhang,
weaver–Burk curves for L-tryptophan exhibit that as the inhib- J. Proteome Res., 2008, 7, 1297–1307.
itor concentration increased, the maximum enzymolysis 11 X. Y. Yan and S. D. Gilman, Electrophoresis, 2010, 31, 346–
velocity and Michaelis constant both declined but their ratio 354.
was constant, showing a series of parallel straight lines in 12 A. H. Lu, E. L. Salabas and F. Schuth, Angew. Chem., Int. Ed.,
Fig. 7B. These results indicate that L-tryptophan displayed an
uncompetitive inhibition behavior.
2007, 46, 1222–1244.
13 R. Villalonga, M. L. Villalonga, P. Diez and J. M. Pingarron,
J. Mater. Chem., 2011, 21, 12858–12864.
14 L. S. Qing, Y. Xue, Y. Zheng, J. Xiong, X. Liao, L. S. Ding,
B. G. Li and Y. M. Liu, J. Chromatogr., A, 2010, 1217, 4663–
4668.
15 F. L. Hu, H. Y. Zhang, H. Q. Lin, C. H. Deng and X. M. Zhang,
J. Am. Soc. Mass Spectrom., 2008, 19, 865–873.
16 J. P. Lalles, Nutr. Rev., 2010, 68, 323–332.
17 T. D. Y. Chung, E. Sergienko and J. L. Millan, Molecules,
2010, 15, 3010–3037.
18 F. G. Sanchez, A. N. Diaz, M. C. R. Peinado and C. Belledone,
Anal. Chim. Acta, 2003, 484, 45–51.
19 S. Sidique, R. Ardecky, Y. Su, S. Narisawa, B. Brown,
J. L. Millan, E. Sergienko and N. D. P. Cosford, Bioorg.
Med. Chem. Lett., 2009, 19, 222–225.
20 J. Iqbal, Anal. Biochem., 2011, 414, 226–231.
21 S. M. Wang, P. Su and Y. Yang, Anal. Biochem., 2012, 427,
139–143.
22 S. M. Wang, P. Su, E. Hongjun and Y. Yang, Anal. Biochem.,
2010, 405, 230–235.
23 J. B. Zhang, H. H. Yan, T. Yang and Y. R. Zong, J. Environ.
Manage., 2011, 92, 53–58.
24 T. B. Goriushkina, A. P. Soldatkin and S. V. Dzyadevych,
J. Agric. Food Chem., 2009, 57, 6528–6535.
4 Conclusions
A new strategy using ALP immobilized onto magnetic nano-
particles for enzymolysis and enzyme inhibition assays has
been developed. The formation of the prepared immobilized
ALP magnetic nanoparticles was conrmed by various charac-
terization techniques and exhibited a clear three-dimensional
core–shell architecture and high saturation magnetization. A
practical application of the enzymatic hydrolysis and enzyme
inhibition assay was performed to evaluate the immobilized
ALP magnetic nanoparticles. The results demonstrate that they
possess high enzymolysis efficiency and satisfactory repeat-
ability. This method combines the advantages of immobilized
enzymes and magnetic media so that it not only offers low cost
through re-use of enzyme but also allows fast and simple
separation using magnets. The protocol provides a facile and
efficient approach to the fabrication of magnetic core/func-
tionalized ALP shell hierarchical structures, which can be easily
adapted to immobilization of other enzymes and potentially
realize high-throughput screening of enzyme reactions and
enzyme inhibitors.
25 L. Yang, C. Y. Chen, Y. F. Chen, J. Shi, S. D. Liu, L. P. Guo and
H. F. Xu, Anal. Chim. Acta, 2010, 683, 136–142.
26 Z. Liu, H. S. Wang, B. Li, C. Liu, Y. J. Jiang, G. Yu and
X. D. Mu, J. Mater. Chem., 2012, 22, 15085–15091.
27 H. Deng, X. L. Li, Q. Peng, X. Wang, J. P. Chen and Y. D. Li,
Angew. Chem., Int. Ed., 2005, 44, 2782–2785.
28 H. L. Wang, J. J. Cao, Y. P. Bi, L. Chen and Q. H. Wan,
J. Chromatogr., A, 2009, 1216, 5882–5887.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (no. 21075008 and 90713013).
Notes and references
1 F. X. Qie, G. X. Zhang, J. X. Hou, X. M. Sun, S. Z. Luo and 29 E. Akyilmaz and M. Turemis, Electrochim. Acta, 2010, 55,
T. W. Tan, Talanta, 2012, 93, 166–171.
5195–5199.
2 R. Hao, R. J. Xing, Z. C. Xu, Y. L. Hou, S. Gao and S. H. Sun, 30 Y. Wei, A. L. Tian, Y. Li, X. Wang and B. Cao, J. Mater. Chem.,
Adv. Mater., 2010, 22, 2729–2742. 2012, 22, 8499–8504.
3 H. M. Chen, C. H. Deng and X. M. Zhang, Angew. Chem., Int. 31 K. Ashtari, K. Khajeh, J. Fasihi, P. Ashtari, A. Ramazani and
Ed., 2010, 122, 617–621. H. Vali, Int. J. Biol. Macromol., 2012, 50, 1063–1069.
4 C. E. Probst, P. Zrazhevskiy and X. H. Gao, J. Am. Chem. Soc., 32 J. Saevels, K. Van den Steen, A. Van Schepdael and
2011, 133, 17126–17129.
J. Hoogmartens, J. Chromatogr., A, 1996, 745, 293–298.
5 M. Kalantari, M. Kazemeini, F. Tabandeh and A. Arpanaei, 33 S. M. Fang, H. N. Wang, Z. X. Zhao and W. H. Wang, J. Pharm.
J. Mater. Chem., 2012, 22, 8385–8393.
Anal., 2012, 2, 83–89.
6 S. A. Ansari and Q. Husain, Biotechnol. Adv., 2012, 30, 512– 34 Z. M. Tang and J. W. Kang, Anal. Chem., 2006, 78, 2514–2520.
523.
35 A. R. Whisnant and S. D. Gilman, Anal. Biochem., 2002, 307,
226–234.
7 K. Khoshnevisan, A. K. Bordbar, D. Zare, D. Davoodi,
M. Noruzi, M. Barkhi and M. Tabatabaei, Chem. Eng. J., 36 C. W. Lin, H. G. Sie and W. H. Fishman, Biochem. J., 1971,
2011, 171, 669–673.
124, 509–516.
1754 | J. Mater. Chem. B, 2013, 1, 1749–1754
This journal is ª The Royal Society of Chemistry 2013