J. Am. Chem. Soc. 1998, 120, 883-887
883
Polymer Concentration-Controlled Substrate Specificity in Solvolysis
of p-Nitrophenyl Alkanoates Catalyzed by
4-(Dialkylamino)pyridine-Functionalized Polymer in Aqueous
Methanol Solution
Guang-Jia Wang* and Wilmer K. Fife*
Contribution from the Department of Chemistry, Indiana UniVersity-Purdue UniVersity at Indianapolis,
402 North Blackford Street, Indianapolis, Indiana 46202
ReceiVed February 7, 1997. ReVised Manuscript ReceiVed NoVember 3, 1997
Abstract: The substrate specificity in solvolysis reactions of p-nitrophenyl alkanoates 2 (n ) 2-18) catalyzed
by 4-(dialkylamino)pyridine-functionalized polymer 1 can be controlled by the concentration of 1 in 50:50
(v/v) methanol-aqueous phosphate buffer solution at pH 8.0 and 30 °C. Below 1.0 × 10-5 unit mol L-1
,
macromolecule 1 exhibits substrate specificity for 2 (n )14). As the concentration of 1 increases to 2.5 ×
10-5 unit mol L-1, the substrate preference changes from 2 (n ) 14) to 2 (n ) 12). The substrate specificity
changes again from 2 (n ) 12) to 2 (n ) 10) when the concentration of 1 increases further to 7.5 × 10-5 unit
mol L-1. The control of substrate specificity by polymer catalyst concentration is believed to be unprecedented
for catalysis of ester solvolysis.
Introduction
the 4-(dialkylamino)pyridine functionality and a bis(trimethyl-
ene)disiloxane backbone (Scheme 1).7 The tris(hydroxymethyl)-
methylammonium ion as a salting-in ion induces the same
substrate specificity for 2 (n ) 6) in aqueous Tris buffer solution
that is obtained with cholesterol esterase for the same hydrolysis
reaction.8 The addition of salting-out agent NaCl induces a
substrate specificity change from 2 (n ) 14) to 2 (n ) 12) in
50:50 (v/v) methanol-aqueous phosphate buffer solution.7c
However, control of substrate specificity by the concentration
of catalyst has not been reported to date for catalysis of
solvolysis reactions.
In this report we describe the first example of substrate
specificity controlled by a polymer catalyst concentration in
solvolysis reactions of 2 (n ) 2-18) catalyzed by 1 in 50:50
(v/v) methanol-aqueous phosphate buffer solution. By chang-
ing the concentration of 1, we are able to change the substrate
preference in 1-catalyzed solvolysis of 2 (n ) 2-18) in
methanol-water medium. These results are unprecedented for
catalysis of ester solvolysis. Furthermore, we report a detailed
kinetic characterization of the effects of polymer concentration
on the 1-catalyzed solvolysis of 2 (n ) 10-16) in different
The hydrophobic effects, which are a principal force in
determining the structures of proteins and nucleic acids and the
binding of substrates to enzymes, play a pivotal role in many
chemical phenomena in aqueous solution. Small-molecule
amphiphiles are well-known to form aggregates of various
morphologies in aqueous solution.1 Depending on the copoly-
mer composition and the surrounding medium, amphiphilic
macromolecules can also form aggregates with multiple mor-
phologies.2 Extensive studies have shown that the increase of
hydrophobic effects of amphiphilic macromolecules, i.e., the
increase in ratio of hydrophobic to hydrophilic components and
the addition of salting-out agents, leads to changes of aggregate
morphology from spheres to rods, and to vesicles in appropriate
solvents.2,3 4-(Dialkylamino)pyridine-functionalized polymers
have been regarded as useful and simple model systems for
obtaining a better understanding of the origins of enzymic
efficiency and selectivity.4-6 Recently, we have reported ion-
induced substrate specificity in solvolysis of p-nitrophenyl
alkanoates 2 (n ) 2-18) catalyzed by polymer 1 containing
(1) (a) Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J.
A. N. Science 1989, 245, 1371. (b) Safran, S. A.; Pincus, P.; Andelman, D.
Science 1990, 248, 354. (c) Brasher, L. L.; Herrington, K. L.; Kaler, E. W.
Langmuir 1995, 11, 4267. (d) Sein, A.; Engberts, J. B. F. N. Langmuir
1995,11, 455. (e) Ravoo, B. J.; Engberts, J. B. F. N. Langmuir 1994, 10,
1735. (f) Schepers, F. J.; Toet, W. K.; van de Pas, J. C. Langmuir 1993, 9,
956.
(2) (a) Price, C. Pure Appl. Chem. 1983, 55, 1563. (b) Hilfiker, R.; Wu,
D. Q.; Chu, B. J. Colloid Interface Sci. 1990, 135, 573. (c) Zhou, Z.; Chu,
B. Macromolecules 1988, 21, 2548. (d) Gast, A. P.; Vinson, P. K.; Cogan-
Farinas, K. A. Macromolecules 1993, 26, 1774. (e) Antonietti, M.; Heinz,
S.; Schmidt, M.; Rosenauer, C. Macromolecules 1994, 27, 3276. (f) Schillen,
K.; Brown, W.; Johnsen, R. M. Macromolecules 1994, 27, 4825. (g) Glatter,
O.; Scherf, G.; Schillen, K.; Brown, W. Macromolecules 1994, 27, 6046.
(h) van Hest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.; van Genderen,
M. H. P.; Meijer, E.W. Science 1995, 268, 1592.
(4) (a) Hirl, M. A.; Gamson, E. P.; Klotz, I. M. J. Am. Chem. Soc. 1979,
101, 6020. (b) Delaney, E. J.; Wood, L. E.; Klotz, I. M. J. Am. Chem. Soc.
1982, 104, 799.
(5) (a) Vaidya, R.; Mathias, L. J. J. Am. Chem. Soc. 1986, 108, 5514.
(b) Mathias, L. J.; Cei, G. Macromolecules 1987, 20, 2645. (c) Cei, G.;
Mathias, L. J. Macromolecules 1990, 23, 4127.
(6) (a) Fife, W. K.; Rubinsztajn, S.; Zeldin, M. J. Am. Chem. Soc. 1991,
113, 8535. (b) Jackson, P. L.; Rubinsztajn, S.; Fife, W. K.; Zeldin, M.;
Gorenstein, D. G. Macromolecules 1992, 25, 7078. (c) Rubinsztajn, S.;
Zeldin, M.; Fife, W. K. Macromolecules 1991, 24, 2682. (d) Rubinsztajn,
S.; Zeldin, M.; Fife, W. K. Macromolecules 1990, 23, 4026. (e) Fife, W.
K. Trends Polym. Sci. 1995, 3, 214. (f) Wang, G. J.; Fife, W. K. Langmuir
1997, 13, 3320.
(7) (a) Wang, G. J.; Ye, D.; Fife, W. K. J. Am. Chem. Soc. 1996, 118,
12536. (b) Wang, G. J.; Fife, W. K. Macromolecules 1996, 29, 8587. (c)
Wang, G. J.; Fife, W. K. Angew. Chem., Int. Ed. Engl. 1997, 36, 1543.
(8) Sutton, L. D.; Stout, J. S.; Quinn, D. M. J. Am. Chem. Soc. 1990,
112, 8398.
(3) (a) Zhang, L.; Eisenberg, A. Science 1995, 268, 1728. (b) Zhang,
L.; Yu, K.; Eisenberg, A. Science 1996, 272, 1777. (c) Zhang, L.; Eisenberg,
A. J. Am. Chem. Soc. 1996, 118, 3168.
S0002-7863(97)00407-1 CCC: $15.00 © 1998 American Chemical Society
Published on Web 01/22/1998