Communication
ChemComm
the secondary amines at the surface of the catalyst probably act
6 T. Cohen, A. G. Dietz and J. R. Miser, J. Org. Chem., 1977, 42,
+
2053–2058.
as a ligand of Cu species to promote the reaction. Besides as
7
B. J. Gallon, R. W. Kojima, R. B. Kaner and P. L. Diaconescu, Angew.
Chem., Int. Ed., 2007, 46, 7251–7254.
+
the support and the stabilizer for the Cu species, g-C N also
3
4
2
9
acted as the reducing agent during the catalyst preparation
process, leading to the formation of Cu species from the
8 A. Tlili, N. Xia, F. Monnier and M. Taillefer, Angew. Chem., Int. Ed.,
2009, 48, 8725–8728.
+
9
D. B. Zhao, N. J. Wu, S. Zhang, P. H. Xi, X. Y. Su, J. B. Lan and
J. S. You, Angew. Chem., Int. Ed., 2009, 48, 8729–8732.
3 2
Cu(NO ) precursor. Further exploration of the catalytic mecha-
nism is currently under investigation in our laboratory.
In summary, we have carried out the synthesis of hetero-
geneous copper-catalyzed phenols without additional ligands
10 J. M. Chen, T. J. Yuan, W. Y. Hao and M. Z. Cai, Catal. Commun.,
011, 12, 1463–1465.
2
1
1 Y. L. Ren, L. Cheng, X. Z. Tian, S. Zhao, J. J. Wang and C. D. Hou,
Tetrahedron Lett., 2010, 51, 43–45.
under air conditions. The cross-coupling reactions of various aryl 12 L. H. Jing, J. T. Wei, L. Zhou, Z. Y. Huang, Z. K. Li and X. G. Zhou,
Chem. Commun., 2010, 46, 4767–4769.
3 K. Yang, Z. Li, Z. Y. Wang, Z. Y. Yao and S. Jiang, Org. Lett., 2011, 13,
iodides with NaOH proceeded very smoothly with a low Cu amount
1
(4 mol%) at 120 1C in air to afford the corresponding coupled
4340–4343.
products in good to excellent yields. The Cu-g-C N catalyst can be 14 K. G. Thakur and G. Sekar, Chem. Commun., 2011, 47, 6692–6694.
3
4
1
5 S. Maurer, W. Liu, X. Zhang, Y. W. Jiang and D. W. Ma, Synlett, 2010,
76–978.
6 D. Yang and H. Fu, Chem. – Eur. J., 2010, 16, 2366–2370.
reused at least 5 times without a decrease in catalytic efficiency.
Phenol can be successfully produced with 98.8% yield under the
9
1
experimental conditions of the 10 g scale. The catalyst is easily 17 R. Paul, M. A. Ali and T. Punniyamurthy, Synthesis, 2010, 4268–4272.
1
1
2
2
2
2
2
8 Y. Xiao, Y. N. Xu, H. S. Cheon and J. Chae, J. Org. Chem., 2013, 78,
804–5809.
9 P. J. Amal Joseph, S. Priyadarshini, M. Lakshmi Kantam and
H. Maheswaran, Catal. Sci. Technol., 2011, 1, 582–585.
0 C. C. Chan, Y. W. Chen, C. S. Su, H. P. Lin and C. F. Lee, Eur. J. Org.
Chem., 2011, 7288–7293.
1 H. J. Xu, Y. F. Liang, Z. Y. Cai, H. X. Qi, C. Y. Yang and Y. S. Feng,
J. Org. Chem., 2011, 76, 2296–2300.
2 S. Priyadarshini, P. J. Amal Joseph, M. Lakshmi Kantam and
B. Sreedhar, Tetrahedron, 2013, 69, 6409–6414.
prepared using cheap raw materials, and is air and moisture-
tolerant, stable and recyclable. Thus, the Cu-g-C catalyzed
hydroxylation of aryl iodides shows great potential in applica-
tion for synthesizing substituted phenols.
The authors thank the National Natural Science Foundation
of China (21273253, 21021003) and the Chinese Academy of
Sciences (KJCX2.YW.H30) for financial support.
5
3 4
N
3 Y. Wang, X. C. Wang and M. Antonietti, Angew. Chem., Int. Ed., 2011,
50, 2–24.
Notes and references
4 (a) X. F. Chen, J. S. Zhang, X. Z. Fu, M. Antonietti and X. C. Wang,
J. Am. Chem. Soc., 2009, 131, 11658–11659; (b) Y. Wang, J. Yao,
H. R. Li, D. S. Su and M. Antonietti, J. Am. Chem. Soc., 2011, 133,
2362–2365; (c) G. D. Ding, W. T. Wang, T. Jiang, B. X. Han, H. L. Fan
and G. Y. Yang, ChemCatChem, 2013, 5, 192–200; (d) P. F. Zhang,
Y. T. Gong, H. R. Li, Z. R. Chen and Y. Wang, Nat. Commun., 2013,
4, 1593.
1
2
J. H. P. Tyman, Synthetic and Natural Phenols, Elsevier, New York, 1996.
D. A. Alonso, C. N ´a jera, I. M. Pastor and M. Yus, Chem. – Eur. J.,
2
010, 16(18), 5274–5284.
3
(a) K. W. Anderson, T. Ikawa, R. E. Tundel and S. L. Buchwald, J. Am.
Chem. Soc., 2006, 128, 10694–10695; (b) M. C. Willis, Angew. Chem., Int.
Ed., 2007, 46, 3402–3404; (c) G. Chen, A. S. C. Chan and F. Y. Kwong,
Tetrahedron Lett., 2007, 48, 473–476; (d) T. Schulz, C. Torborg, 25 F. Dong, L. W. Wu, Y. J. Sun, M. Fu, Z. B. Wu and S. C. Lee, J. Mater.
B. Sch ¨a ffner, J. Huang, A. Zapf, R. Kadyrov, A. B ¨o rner and M. Beller,
Chem., 2011, 21, 15171–15174.
Angew. Chem., Int. Ed., 2009, 48, 918–921; (e) A. G. Sergeev, T. Schulz, 26 (a) J. G. Jolley, G. G. Geesey, M. R. Haukins, R. B. Write and P. L.
C. Torborg, A. Spannenberg, H. Neumann and M. Beller, Angew. Chem.,
Int. Ed., 2009, 48, 7595–7599; ( f ) C. B. Lavery, N. L. Rotta-Loria,
R. McDonald and M. Stradiotto, Adv. Synth. Catal., 2013, 355, 981–987.
T. George, R. Mabon, G. Sweeney, J. B. Sweeney and A. Tavassoli, 27 B. V. Lotsch and W. Schnick, Chem. Mater., 2006, 18, 1891–1900.
J. Chem. Soc., Perkin Trans. 1, 2000, 2529–2574.
Wichlacz, Appl. Surf. Sci., 1989, 37, 469; (b) S. W. Gaarenstroom and
N. J. Winograd, Chem. Phys., 1977, 67, 3500; (c) J. C. Klein, A. Proctor,
D. M. Hercules and J. F. Black, Anal. Chem., 1983, 55, 2055–2059.
4
5
28 F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Chem.
Commun., 2006, 4530–4532.
(a) Y. H. Zhang and J. Q. Yu, J. Am. Chem. Soc., 2009, 131, 14654–14655;
(
b) R. E. Maleczka, F. Shi, D. Holmes and M. R. Smith III, J. Am. Chem. 29 A. Liljestrand, P. Bremberg and D. Arvidsson, US Pat., 20130133310,
Soc., 2003, 125, 7792–7793.
2011.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 9072--9075 | 9075