9 (a) E. Buncel, E. J. Dunn, R. A. B. Bannard and J. G. Purdon,
J. Chem. Soc., Chem. Commun., 1984, 162; (b) E. J. Dunn and
E. Buncel, Can. J. Chem., 1989, 67, 1440; (c) E. J. Dunn, R. Y. Moir
and E. Buncel, Actual. Fis.-Quim. Org., 1991, 110.
10 (a) R. Nagelkerke, G. R. J. Thatcher and E. Buncel, Org. Biomol.
Chem., 2003, 1, 163; (b) E. Buncel, R. Nagelkerke and G. R. J.
Thatcher, Can. J. Chem., 2003, 81, 53; (c) R. Nagelkerke, M. J.
Pregel, E. J. Dunn, G. R. J. Thatcher and E. Buncel, Org. React.
(Tartu), 1995, 105, 11.
11 (a) M. J. Pregel and E. Buncel, J. Am. Chem. Soc., 1993, 115, 10;
(b) M. J. Pregel and E. Buncel, J. Org. Chem., 1991, 56, 5583;
(c) M. J. Pregel and E. Buncel, J. Chem. Soc., Perkin Trans. 2, 1991,
307.
12 (a) M. J. Pregel, E. J. Dunn and E. Buncel, J. Am. Chem. Soc., 1991,
113, 3545; (b) M. J. Pregel, E. J. Dunn and E. Buncel, Can. J. Chem.,
1990, 68, 1846; (c) E. J. Dunn, R. Y. Moir, E. Buncel, J. G. Purdon
and R. A. B. Bannard, Can. J. Chem., 1990, 68, 1837; (d ) E. Buncel
and M. J. Pregel, J. Chem. Soc., Chem. Commun., 1989, 1566.
13 M. J. Pregel, E. J. Dunn, R. Nagelkerke, G. R. J. Thatcher and
E. Buncel, Chem. Soc. Rev., 1995, 24, 445.
14 (a) J. R. Jones, Prog. React. Kinet., 1973, 7, 1; (b) A. Papoutsis,
G. Papanastasiou, J. Jannakoudakis and C. Georgulis, J. Chim.
Phys., 1985, 82, 913; (c) K. J. Msayib and C. I. F. Watt, Chem. Soc.
Rev., 1992, 21, 237.
15 (a) C. C. Evans and S. Sugden, J. Chem. Soc., 1949, 270; (b) J. R.
Bevan and C. B. Monk, J. Chem. Soc., 1956, 1396; (c) P. Jones,
P. Harrison and L. Wynne-Jones, J. Chem. Soc., Perkin Trans. 2,
1979, 1679; (d ) P. Beronius and L. Pataki, Acta Chem. Scand., Ser.
A, 1979, 33, 675; (e) N. N. Lichtin and K. N. Rao, J. Am. Chem. Soc.,
1961, 83, 2417.
16 J. Barthel, J.-C. Justice and R. Wachter, Z. Phys. Chem. Neu. Folge,
1973, 84, 113.
17 P. Haake, D. R. McCoy, W. Okamura, S. R. Alpha, S.-Y. Wong,
D. A. Tyssee, J. P. McNeal and R. D. Cook, Tetrahedron Lett., 1968,
5243.
18 K. T. Douglas and A. Williams, J. Chem. Soc., Perkin Trans. 2, 1976,
515.
19 H. H. Jaffe, Chem. Rev., 1953, 53, 191.
20 R. D. Cook and L. Rahhal-Arabi, Tetrahedron Lett., 1985, 3147.
21 A. Williams and R. A. Naylor, J. Chem. Soc. (B), 1971, 1967.
22 B. I. Istomin, N. A. Sakhdrukova, A. V. Kalabina and Y. I.
Sukhorkov, Zh. Obsch. Khim., 1982, 52, 2011; Engl. Transl. p. 1787.
23 S. R. Hartshorn, Aliphatic Nucleophilic Substitution, Cambridge
University Press, Cambridge, 1973, pp. 88–90.
24 W. P. Jencks, Chem. Rev., 1985, 85, 511.
25 W. J. Albery and M. M. Kreevoy, Adv. Phys. Org. Chem., 1978, 16,
87.
26 J. Miller, Aromatic Nucleophilic Substitution, Elsevier, Amsterdam,
1968, Chapter 4.
dimethylphosphinate. Equimolar quantities of 4-nitrophenol,
pyridine, and dimethylphosphinoyl chloride were stirred in di-
chloromethane for 12 h in an atmosphere of nitrogen. The
white precipitate of pyridinium chloride was filtered off in an
inert atmosphere in a glove box. The filtrate was dried with
MgSO4 and the solvent evaporated off to give a red oil which
solidified on trituration with dry ether. Three recrystallizations
from dichloromethane gave the pure product 4a. Liquid prod-
ucts were purified by distillation under vacuum. The products
gave 1H and 13C NMR spectra consistent with the structures of
the esters. The boiling/melting points obtained for the esters
are as follows: 4-nitrophenyl dimethylphosphinate (4a), mp
98–100 ЊC, with decomposition (lit.,18 97–101 ЊC); 3-nitrophenyl
dimethylphosphinate (4b), mp 80–82 ЊC, with decomposition
(lit.,18 81–84 ЊC); 4-acetylphenyl dimethylphosphinate (4c),
bp 174–176 ЊC, 1.25 mm Hg (lit.,18 219–228 ЊC, 30 mm Hg);
4-chlorophenyl dimethylphosphinate (4d), bp 110 ЊC, 0.77 mm
Hg (lit.,18 182–184 ЊC, 27 mm Hg); phenyl dimethylphosphinate
(4e), bp 102–106 ЊC, 0.70 mm Hg (lit.,18 164–166 ЊC, 27 mm
Hg); and 4-methylphenyl dimethylphosphinate (4f ), bp 141–
142 ЊC, 2.17 mm Hg (lit.,18 160–170 ЊC, 15 mm Hg).
Kinetic method
The rates of reaction in anhydrous ethanol were followed
spectrophotometrically by monitoring the formation of the
appropriate phenoxide ion at 25 ЊC under pseudo-first order
conditions, with base concentrations at least 20-fold in excess
of the substrate. Kinetics were performed, in part, using a
Beckman DU-8 or Perkin-Elmer Lambda-5 spectrophoto-
meter, equipped with thermostatted cell holders which main-
tained the temperature inside the 10 mm quartz cuvette at
25 0.1 ЊC. Relatively fast kinetic experiments were monitored
using a Hi-Tech stopped-flow module equipped with a thermo-
statted water bath coupled to a McPherson monochromator
and Can-Tech transient recorder. Spectral traces were displayed
on a Hewlett-Packard oscilloscope and the data were treated
directly by a Commodore CBM 8032 computer. Typically, run
solutions of substrates were made up just prior to kinetic
runs which were generally performed in replicate and followed
for 10 half-lives. First-order rate constants, kobs, were reckoned
from linear plots of ln (A∞ Ϫ At) vs. time.
27 (a) W. P. Jencks and J. Regenstein, in Handbook of Biochemistry,
Ed. H. A. Sober, The Chemical Rubber Co., Cleveland, 1970,
2nd Edition, Section J-187; (b) I.-H. Um, Y.-J. Hong and D.-S. Kwon,
Tetrahedron, 1997, 53, 5073.
28 N. Bourne, E. Chrystiuk, A. M. Davis and A. Williams, J. Am.
Chem. Soc., 1988, 110, 1890.
29 E. Buncel and E. J. Dunn, unpublished results.
30 (a) A. Williams, Acc. Chem. Res., 1989, 22, 387 and references cited
therein; (b) N. Bournes, E. Chrystiuk, A. M. Davies and
A. Williams, J. Am. Chem. Soc., 1988, 110, 1890; (c) S. A. Ba-Saif,
M. A. Waring and A. Williams, J. Chem. Soc., Perkin Trans. 2, 1991,
1653.
31 J. E. Omakor, I. Onyido, G. W. vanLoon and E. Buncel, J. Chem.
Soc., Perkin Trans. 2, 2001, 324.
32 M. Charton, Prog. Phys. Org. Chem., 1987, 16, 287.
33 D. A. Jencks and W. P. Jencks, J. Am. Chem. Soc., 1977, 99, 7948.
34 R. Rowell and D. Gorenstein, J. Am. Chem. Soc., 1981, 103, 5894.
35 (a) D. Herschlag and W. P. Jencks, J. Am. Chem. Soc., 1989, 111,
7587 and references cited therein; (b) W. P. Jencks, M. T. Haber,
D. Herschlag and K. L. Nazaretian, J. Am. Chem. Soc., 1986, 108,
479; (c) M. T. Skoog and W. P. Jencks, J. Am. Chem. Soc., 1984, 106,
7597.
Acknowledgements
Support of this research by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) is gratefully
acknowledged. KGA is the recipient of the Queen’s University
Graduate Student Fellowship.
References
1 W. N. Lipscombe and N. Slater, Chem. Rev., 1996, 96, 2375.
2 A. Fersht, Enzyme Structure and Mechanism, W. H. Freeman and
Co., New York, 2nd Edition, 1985.
3 G. R. J. Thatcher and R. Kluger, Adv. Phys. Org. Chem., 1989, 25,
99.
4 R. Krämer, Coord. Chem. Rev., 1999, 182, 243.
5 (a) C. Vichard and T. A. Kaden, Inorg. Chim. Acta, 2002, 337, 173;
(b) P. Hendry and A. M. Sargeson, Inorg. Chem., 1990, 29, 92
and references cited therein; (c) K. A. Deal and J. N. Burstyn,
Inorg. Chem., 1996, 35, 2792.
6 (a) D. Herschlag and W. P. Jencks, J. Am. Chem. Soc., 1987, 109,
4665; (b) I. E. Catrina and A. C. Hengge, J. Am. Chem. Soc., 1999,
121, 2156.
7 (a) J. S. Tsang, A. A. Neverov and R. S. Brown, J. Am. Chem. Soc.,
2003, 125, 1559; (b) J. S. Tsang, A. A. Neverov and R. S. Brown,
J. Am. Chem. Soc., 2003, 125, 7602.
8 J. J. R. Fraùsto da Silva and R. J. P. Williams, The Biological
Chemistry of the Elements, Clarendon Press, Oxford, 1993, pp. 230–
242.
36 (a) J. L. Kurz, J. Am. Chem. Soc., 1963, 85, 987; (b) R. Cacciapaglia
and L. Mandolini, Chem. Soc. Rev., 1993, 22, 221; (c) O. S. Tee,
Adv. Phys. Org. Chem., 1994, 29, 1.
37 D. Eisenman, Biophys. J. Suppl., 1962, 2, 259.
38 G. W. Parshall, Org. Synth., 1965, 45, 102.
39 H. Reinhardt, D. Bianchi and D. Molle, Chem. Ber., 1957, 90,
1656.
40 K. A. Pollart and H. J. Harwood, J. Org. Chem., 1962, 27, 4446.
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2, 6 0 1 – 6 1 0
610