Trogler, Inorg. Chem., 1989, 28, 2330; (o) R. W. Hay and N. Govan, J.
Chem. Soc., Chem. Commun., 1990, 714; (p) T. C. Bruice,A. Tsubouchi,
R. O. Dempcy and L. P. Olson, J. Am. Chem. Soc., 1996, 118, 9867;
(q) J. A. A. Ketelaar, H. R. Gersmann and M. M. Beck, Nature, 1956,
177, 392; (r) D. Kong, A. E. Martell and J. Reibenspies, Inorg. Chim.
Acta., 2002, 333, 7; (s) R. W. Hay and N. Govan, Polyhedron, 1998,
17, 463, 2079; (t) R. W. Hay, N. Govan and K. E. Parchment, Inorg.
Chem. Commun., 1998, 1, 228; (u) B. L. Tsao, R. J. Pieters and
J. Rebek, Jr., J. Am. Chem. Soc., 1995, 177, 2210; (v) M. Yamami,
H. Furutachi, T. Yokoyama and H. Okawa, Inorg. Chem., 1998, 37,
6832; (w) C. M. Hartshorn, A. Singh and E. L. Chang, J. Mater. Chem.,
2002, 12, 602; (x) V. Chandrasekhar, A. Athimoolan, S. G. Srivatsan,
P. S. Sundaram, S. Verma,A. Steiner, S. Zacchini and R. Butcher, Inorg.
Chem., 2002, 41, 5162; (y) M. Rombach, C. Maurer, K. Weis, E. Keller
and H. Vahrenkamp, Chem. Eur. J., 1999, 5, 1013.
4 (a) L. Barr, C. J. Easton, K. Lee, S. F. Lincoln and J. S. Simpson, Tet-
rahedron Lett., 2002, 7797; (b) W. H. Chapman and R. Breslow, J. Am.
Chem. Soc., 1995, 117, 5462; (c) T. Koike and E. Kimura, J. Am. Chem.
Soc., 1991, 113, 8935; (d) M. M. Ibrahim, K. Ichikawa and M. Shiro,
Inorg. Chim. Acta, 2003, 353, 187; (e) T. Itoh, H. Hisada, Y. Usui and
Y. Fuji, Inorg. Chim. Acta, 1998, 283, 51.
5 (a) J. M. Smolen and A. T. Stone, Environ. Sci. Technol., 1997,
31, 1664; (b) L. Y. Kuo and N. M. Perera, Inorg. Chem., 2000, 39,
2103; (c) G. M. Kazankov, V. S. Sergeeva, L. A. Efremenko, S. D.
Varfolomeev andA. D. Ryabov, Angew. Chem., Int. Ed., 2000, 39, 3117;
(d) G. M. Kazankov, V. S. Sergeva, A. A. Borisenko, A. I. Zatsman and
A. D. Ryabov, Russ. Chem. Bull. Int. Ed., 2001, 50, 1844.
acid in water, and upfield chemical shifts are negative. Mass-spectra
of 1–2 mmol dm−3 solutions of Cu(OTf)2 in methanol in the pres-
ence of ligands and base were determined using a VG Quattro mass
spectrometer equipped with an electrospray source operating at
+
cone voltages between 12 and 60 V. The CH3OH2 concentration
was determined using an auto-titrator equipped with a Metrohm
6.0255.100 combination (glass/calomel) electrode calibrated with
standardized aqueous buffers (pH = 4.00 and 10.00) as described in
our recent papers.7,17 Values of sspH were calculated by subtracting
a correction constant of −2.24 from the experimental meter reading
as reported by Bosch et al.18
(c) Kinetics
The kinetics of methanolysis were monitored at 25 °C in anhydrous
methanol by observing the rate of appearance of p-nitrophenol
or 3-methyl-4-nitrophenol between 312 and 335 nm at [2] or
[3] = (4–12) × 10−5 mol dm−3 under pseudo-first-order conditions
of excess Cu(OTf)2 ((0.2–5.0) × 10−3 mol dm−3). All reactions
were followed to at least three half lives and found to exhibit good
pseudo-first order rate behavior and the first-order rate constants
(kobs) were evaluated by least squares fitting the Abs. vs. time traces
to a standard exponential model. The kinetics were all determined
s
s
under self-buffered conditions where the pH was controlled by
6 CAUTION: paraoxon and fenitrothion are potent acetylcholinesterase
inhibitors and should be used with appropriate care avoiding contact and
inhalation.
7 (a) J. A. W. Tsang, A. A. Neverov and R. S. Brown, J. Am. Chem. Soc.,
2003, 125, 7602; (b) W. Desloges, A. A. Neverov and R. S. Brown,
Inorg. Chem., in press.
a constant Cu2+/Cu2+(−OCH3) ratio and in the cases with ligands
4–6, these were added in amounts equivalent to the [Cu2+]total
.
s
Under these conditions, the observed pH values correspond to
s
s
s
the apparent pHa value for ionization of the LCu2+(HOCH3)
LCu2+(−OCH3) + +H2OCH3 system. A turnover experiment was
conducted using 0.4 mM Cu(OTf)2 along with equimolar 4 and 0.5
eq. of NBu4OCH3. The methanolysis of 2 mM 3 was monitored
by UV/vis kinetics and showed 10 turnovers relative to the active
catalyst (0.2 mM 4Cu2+(−OCH3)) within 100 min.
8 For the designation of pH in non-aqueous solvents we use the forms
described by Bosch and co-workers9,18 based on the recommendations
of the IUPAC, Compendium of Analytical Nomenclature. Definitive
Rules 1997, Blackwell, Oxford, UK, 3rd edn., 1998. If one calibrates
the measuring electrode with aqueous buffers and then measures the pH
of an aqueous buffer solution, the term wwpH is used; if the electrode is
calibrated in water and the ‘pH’ of the neat buffered methanol solution
then measured, the term ws pH is used; and if the latter reading is made,
and the correction factor of 2.24 (in the case of methanol) is added, then
the term sspH is used.
Acknowledgements
The authors thank the Natural Sciences and Engineering Research
Council of Canada and Queen’s University for the support of this
work.
9 Given that the autoprotolysis constant of methanol is 10−16.77, neutral sspH
in methanol is 8.4; E. Bosch, F. Rived, M. Rosés and J. Sales, J. Chem.
Soc., Perkin Trans. 2, 1999, 1953.
10 (a) E. Arenare, P. Paoletti, A. Dei and A. Vacca, J. Chem. Soc., Dalton
Trans., 1972, 736; (b) J. G. J. Weijnen, A. Koudijs, G. A. Schellekens
and J. F. J. Engbersen, J. Chem. Soc., Perkin Trans. 2, 1992, 829;
(c) J. G. J. Weijnen, A. Koudijs and J. F. J. Engbersen, J. Org. Chem.,
1992, 57, 7258.
References
1 (a) A. Toy and E. N. Walsh, Phosphorus Chemistry in Everyday Liv-
ing, American Chemical Society, Washington, DC, 2nd edn., 1987, ch.
18–20; (b) L. D. Quin, A Guide to Organophosphorus Chemistry, Wiley,
New York, 2000; (c) M. A. Gallo and N. J. Lawryk, Organic Phospho-
rus Pesticides. The Handbook of Pesticide Toxicology, Academic Press,
San Diego, CA, 1991; (d) P. J. Chernier, Survey of Industrial Chemistry,
VCH, New York, 2nd edn., 1992, pp. 389–417.
11 R. Greenhalg and J. N. Shoolery, Anal. Chem., 1978, 50, 2039.
12 G. Mastrantonio and C. O. Della Védova, J. Mol. Struct., 2001, 561,
161.
13 The reported rate constants for HO− attack on paraoxon and parathion
at 25 °C are 7.5 × 10−2 dm3 mol−1 s−1 and ~1 × 10−4 dm3 mol−1 s−1,
respectively, while the rate constant for attack on methyl parathion
2 K. A. Hassall, The Biochemistry and Uses of Pesticides, VCH,
Weinheim, 2nd edn., 1990, pp. 269–275.
(CH3O)2PS(OC6H4NO2) is 2.6 × 10−4 dm3 mol−1 s−1.5d,e
.
3 (a) S. H. Gellman, R. Petter and R. Breslow, J. Am. Chem. Soc., 1986,
108, 2388; (b) R. S. Brown and M. Zamkanei, Inorg. Chim. Acta., 1985,
108, 201; (c) R. S. Kenley, R. H. Fleming, R. M. Laine, D. S. Tse and
J. S. Winterle, Inorg. Chem., 1984, 23, 1870; (d) B. S. Cooperman, Met.
Ions Biol. Syst., 1976, 5, 79, and references therein; (e) F. M. Menger,
L. H. Gan, E. Johnson and H. D. Durst, J. Am. Chem. Soc., 1987, 109,
2800; (f) F. M. Menger andT. Tsuno, J. Am. Chem. Soc., 1989, 111, 4903;
(g) P. Scrimin, P. Tecilla and U. Tonellato, J. Org. Chem., 1991, 56, 161,
and references therein; (h) F. Tafesse, Inorg. Chim. Acta., 1998, 269,
287; (i) P. Scrimin, G. Ghinlanda, P. Tecilla and R. A. Moss, Langmuir,
1996, 12, 6235; (j) C. A. Bunton, P. Scrimin and P. Tecilla, J. Chem.
Soc., Perkin Trans. 2., 1996, 419; (k) Y. Fujii, T. Itoh and K. Onodera,
Chem. Lett. Jpn., 1995, 305; (l) S. J. Oh, C. W. Yoon and J. W. Park,
J. Chem. Soc., Perkin Trans. 2., 1996, 329; (m) T. Berg, A. Simeonov
and K. Janda, J. Comb. Chem., 1999, 1, 96; (n) J. R. Morrow and W. C.
14 The difference in basicity of the coordinated vs. free −OCH3 is
judged on the basis of the autoprotolysis constant of methanol
s
(sspK = 16.77) and the pH of half neutralization of 4Cu2+(HOCH3)
s
4Cu2+(−OCH3) + H2O+CH3 which is 8.75.
15 Preliminary results with (RO)2P(O)SAr systems suggest the participa-
tion of the metal ion in the departure of the leaving group from a penta-
coordinated P intermediate, a phenomenon with is currently under active
investigation.
16 The Merck Index, Merck & Co. Inc., Rahway, NJ, 11th edn., 1989.
17 G. Gibson, A. A. Neverov and R. S. Brown, Can. J. Chem., 2003, 81,
495.
18 (a) F. Rived, M. Rosés and E. Bosch, Anal. Chim. Acta, 1998, 374, 309;
(b) E. Bosch, P. Bou, H. Allemann and M. Rosés, Anal. Chem., 1996,
3651.
2 2 4 8
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 2 2 4 5 – 2 2 4 8