RSC Advances
Please do not adjust margins
Page 6 of 7
Journal Name
COMMUNICATION
By considering the environmental impacts, the use of many 13. J. I. Garcia, H. Garcia-Marin and E. Pires, Green Chem., 2014,
traditional organic solvents in chemical production should be
16, 1007-1033.
DOI: 10.1039/C5RA18080E
avoided or at least should be replaced with greener alternatives. 14. Y. L. Gu and F. Jerome, Green Chem., 2010, 12, 1127-1138.
However, so far there is no universal green solvent that can be used 15. Q. H. Zhang, K. D. Vigier, S. Royer and F. Jerome, Chem. Soc.
in all situations and therefore search for “green solvents” is still
Rev., 2012, 41, 7108-7146.
ongoing. In this direction, we have demonstrated here the 16. N. Clavaguera, J. Saurina, J. Lheritier, J. Masse, A. Chauvet
application of lactic acid as a bio based green solvent for the
catalyst free oxidation of arylboronic acids into phenols with
and M. T. ClavagueraMora, Thermochim. Acta, 1997, 290,
173-180.
aqueous hydrogen peroxide. The electron donating and 17. A. P. Abbott, R. C. Harris, K. S. Ryder, C. D'Agostino, L. F.
withdrawing functional groups substituted arylboronic acids Gladden and M. D. Mantle, Green Chem., 2011, 13, 82-90.
underwent oxidative ipso-hydroxylation smoothly and yielded 18. C. Russ and B. König, Green Chem., 2012, 14, 2969-2982.
corresponding phenols in high yield. Remarkably, the oxidation- 19. L. V. B. Burlando, L. Cornara, and E. Bottini-Massa, Herbal
sensitive functional groups such as sulphide, ketone, aldehyde and
olefin are tolerated under the reaction condition which shows the
Principles in Cosmetics: Properties and Mechanisms of Action,
CRC Press, Taylor and Francis Group, LLC, 2010.
broad scope of the methodology. This study reveals that lactic acid 20. N. Balasundram, K. Sundram and S. Samman, Food Chem.,
can be used not only for acid catalyzed reactions,45 but also to the
2006, 99, 191-203.
selective oxidation reactions. More importantly, the efficiency of 21. L. Pilato, React. Funct. Polym., 2013, 73, 270-277.
lactic acid is found to be equal or even slightly better than acetic 22. J. E. O'Connell and P. F. Fox, Int. Dairy J., 2001, 11, 103-120.
acid and therefore acetic acid can be efficiently replaced by lactic 23. R. James and J. B. Glen, J. Med. Chem., 1980, 23, 1350-1357.
acid in organic synthesis. However, significant research is still 24. J. H. P.Tyman, Synthetic and Natural Phenols, Elsevier, New
needed to assess the complete credentials and short comings of
York, 1996.
lactic acid in organic synthesis in which our group is currently 25. Z. Rappoport, The chemistry of phenols, John Wiley & Sons
engaged.
Ltd, 2013.
26. D. G. Hall, Boronic Acids: Preparation, Applications in Organic
Synthesis and Medicine, Wiley-VCH, 2006.
Acknowledgements
27. A. Mahanta, P. Adhikari, U. Bora and A. J. Thakur,
Tetrahedron Lett., 2015, 56, 1780-1783.
28. N. Mulakayala, Ismail, K. M. Kumar, R. K. Rapolu, B.
Kandagatla, P. Rao, S. Oruganti and M. Pal, Tetrahedron Lett.,
2012, 53, 6004-6007.
29. T. Begum, A. Gogoi, P. K. Gogoi and U. Bora, Tetrahedron
Lett., 2015, 56, 95-97.
30. B. A. Dar, P. Bhatti, A. P. Singh, A. Lazar, P. R. Sharma, M.
Sharma and B. Singh, Appl. Catal. A Gen., 2013, 466, 60-67.
31. K. Hosoi, Y. Kuriyama, S. Inagi and T. Fuchigami, Chem.
Commun., 2010, 46, 1284-1286.
32. H. L. Qj, D. S. Chen, J. S. Ye and J. M. Huang, J. Org. Chem.,
2013, 78, 7482-7487.
33. J. M. Xu, X. Y. Wang, C. W. Shao, D. Y. Su, G. L. Cheng and Y. F.
Hu, Org. Lett., 2010, 12, 1964-1967.
34. C. Zhu, R. Wang and J. R. Falck, Org. Lett., 2012, 14, 3494-
3497.
35. A. Gogoi and U. Bora, Synlett, 2012, 1079-1081.
36. N. Chatterjee and A. Goswami, Tetrahedron Lett., 2015, 56,
1524-1527.
37. D-S. Chen and J-M. Huang, Synlett, 2013, 24, 499–501.
38. Y. Q. Zou, J. R. Chen, X. P. Liu, L. Q. Lu, R. L. Davis, K. A.
Jørgensen and W. J. Xiao, Angew. Chem. Int. Ed. Engl., 2012,
51, 784-788.
39. V. H. Agreda, Acetic Acid and its Derivatives, CRC Press 1992.
40. (a) N. Yoneda, S. Kusano, M. Yasui, P. Pujado, and S. Wilcher,
Appl. Catal. A Gen., 2001, 221, 253-265. (b) K. Sano, H.
Uchida and S. Wakabayashi, Catal. Surv. Jpn., 1999, 3, 55-60.
41. Bio-based acetic acid as vinegar has been made since the
dawn of civilization and the industrial production of bio-
J.K gratefully acknowledges IIT (BHU) for the start-up research
grant. S.G and P.C acknowledges IIT (BHU) for a research fellowship.
J.K thanks to Dr. K. Murugan (Yung Shin, Taiwan) for a helpful
discussion during the manuscript preparation. J.K also
acknowledges Prof. V. Srivastava (IIT BHU) for a helpful discussion
during the course of experiments. J.K thanks to Dr. V. Ganesan and
Dr. V. K. Tiwari (Department of Chemistry, Banaras Hindu
University) for providing some laboratory facilities.
Notes and references
1.
C. Reichardt and T. Welton, Solvents and solvent effects in
organic chemistry, WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2011.
2.
3.
4.
M. B. Gawande, V. D. Bonifacio, R. Luque, P. S. Branco and R.
S. Varma, Chem. Soc. Rev., 2013, 42, 5522-5551.
B. Yu, A. H. Liu, L. N. He, B. Li, Z. F. Diao and Y. N. Li, Green
Chem., 2012, 14, 957-962.
C. Capello, U. Fischer and K. Hungerbühler, Green Chem.,
2007, 9, 927-934.
5.
6.
7.
P. G. Jessop, Green Chem., 2011, 13, 1391-1398.
R. A. Sheldon, Green Chem., 2005, 7, 267-278.
K. Shanab, C. Neudorfer, E. Schirmer and H. Spreitzer, Curr.
Org. Chem., 2013, 17, 1179-1187.
8.
9.
P. Anastas and N. Eghbali, Chem. Soc. Rev, 2010, 39, 301-312.
C. J. Li and B. M. Trost, Proc. Natl. Acad. Sci. USA, 2008, 105,
13197-13202.
10. (a) Y. Gu and F. Jerome, Chem. Soc. Rev., 2013, 42, 9550-
9570. (b) C. Estévez, Sustainable Solutions - Green Solvents
for Chemistry. In: R. Höfer, ed., Sustainable Solutions for
Modern Economies, RSC Green Chem. No. 4, Cambridge : RSC
Publ.; (2009) pp. 407-424.
11. L. Moity, M. Durand, A. Benazzouz, C. Pierlot, V. Molinier and
J. M. Aubry, Green Chem., 2012, 14, 1132-1145.
12. D. Reinhardt, F. Ilgen, D. Kralisch, B. König and G. Kreisel,
Green Chem., 2008, 10, 1170-1181.
based acetic acid is
a fixed component in alcoholic
fermentation. See: (a) M. J. Taherzadeh, C. Niklasson and G.
Lidén, Acetic acid—friend or foe in anaerobic batch
conversion of glucose to ethanol by Saccharomyces
cerevisiae? Chem. Eng. Sci., 1997, 52, 2653–2659. (b) P. J. de
Wild, Biomass Pyrolysis for Hybrid Biorefineries. In: A.
Pandey, R. Höfer, M. Taherzadeh, K. M. Nampoothiri and C.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins