electricus acetylcholinesterase were purchased from Fluka
Biochimika. All other chemicals and biochemicals were purchased
from Sigma-Aldrich.
Minnesota) for the provision of the P. fluorescens aryl esterase
expression plasmid.
References
Synthesis of p-nitrophenyl p-substituted benzoate substrates
1 D. L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken,
M. Harel, S. J. Remington, I. Silman, J. Schrag, J. L. Sussman, K. H. G.
Verschueren and A. Goldman, Protein Eng., 1992, 5, 197–211.
2 J. D. Schrag and M. Cygler, Methods Enzymol., 1997, 284, 85–107.
3 T. D. H. Bugg, Bioorg. Chem., 2004, 32, 367–375.
4 W. W. Y. Lam and T. D. H. Bugg, Biochemistry, 1997, 36, 12242–12251.
5 S. Y. K. Seah, G. Terracina, J. T. Bolin, P. Riebel, V. Sniekus and L. D.
Eltis, J. Biol. Chem., 1998, 273, 22943–22949.
Substrates 1–8 were synthesized using literature procedures,13,14
either from the p-substituted benzoic acid and p-nitrophenyl
chloroformate (1–6), or from the p-substituted benzoyl chloride
and p-nitrophenol (7, 8). NMR and MS data were identical with
literature data (ref. 13 and 14).
6 E. Diaz and K. N. Timmis, J. Biol. Chem., 1995, 270, 6403–6411.
7 I. M. J. Henderson and T. D. H. Bugg, Biochemistry, 1997, 36, 12252–
12258.
8 J.-J. Li and T. D. H. Bugg, Chem. Commun., 2005, 130–132.
9 S. M. Fleming, T. A. Robertson, G. J. Langley and T. D. H. Bugg,
Biochemistry, 2000, 39, 1522–1531.
10 D. M. Speare, S. M. Fleming, M. N. Beckett, J.-J. Li and T. D. H. Bugg,
Org. Biomol. Chem., 2004, 2, 2942–2950.
11 G. Dunn, M. G. Montgomery, F. Mohammed, A. Coker, J. B. Cooper,
T. A. Robertson, J.-L. Garcia, T. D. H. Bugg and S. P. Wood, J. Mol.
Biol., 2005, 346, 253–265.
12 C. Li, M. G. Montgomery, F. Mohammed, J.-J. Li, S. P. Wood and
T. D. H. Bugg, J. Mol. Biol., 2005, 346, 241–251.
13 S. Kim, J. I. Lee and Y. C. Kim, J. Org. Chem., 1985, 50, 560–565.
14 C. D. Erba, F. Sancassan, G. Leandri, M. Novi, G. Petrillo and A.
Mele, Gazz. Chim. Ital., 1989, 119, 643–647.
15 P. Bernhardt, K. Hult and R. J. Kazlauskas, Angew. Chem., Int. Ed.,
2005, 44, 2742–2746.
16 J.-J. Li, C. Li, C. A. Blindauer and T. D. H. Bugg, Biochemistry, 2006,
45, 12461–12469.
Steady-state kinetic measurements
Esterase activity of BphD against p-nitrophenyl esters (data in
Table 2) was assayed in 1.0 ml of 10 mM potassium phosphate
buffer pH 7.0 at 25 ◦C on a Cary 1 UV–vis spectrophotometer by
monitoring the appearance of p-nitrophenol at 410 nm. Km and kcat
values were determined using Lineweaver–Burk plots. All other
enzyme assays were carried out in 200 ll of 10 mM potassium
phosphate buffer pH 7.0 at 25 ◦C on a Genios fluorometer
(Tecan), monitoring the appearance of p-nitrophenol at 400 nm
over 30 min. The assays were done in duplicate. Substrates were
dissolved in an appropriate amount of DMSO. For Hammett plot
studies, p-substituted p-nitrophenyl benzoate esters were assayed
at a final concentration of 100 lM. For solvent kinetic isotope
effect determination, p-nitrophenyl acetate (final concentration 2
mM) was used as a substrate, using 99% deuterium oxide as the
solvent, in deuterated buffer.
17 P. K. Agarwal, S. P. Webb and S. Hammes-Schiffer, J. Am. Chem. Soc.,
2000, 122, 4803–4812.
18 J. B. Thoden, T. M. Wohlers, J. L. Fridovich-Keil and H. M. Holden,
Biochemistry, 2000, 39, 5691–5701.
19 J. Zuegg, K. Gruber, M. Gugganig, U. G. Wagner and C. Kratky,
Protein Sci., 1999, 8, 1990–2000.
Pre-steady state kinetics measurements
The pre-steady state kinetic assays for BphD, C. antarctica lipase
B, aryl esterase, and acetylcholinesterase were carried out on
a DX.17MV stopped-flow spectrometer (Applied Photophysics
Ltd) using p-nitrophenyl acetate as the substrate. The enzymes
and substrate were dissolved in 10 mM potassium phosphate
buffer, pH 7.0. In each single stopped-flow experiment, solutions
of 1.0 mg ml−1 enzyme (14–32 lM) and substrate were mixed in a 1
: 1 or 1 : 10 [E] : [S] ratio, at 25 ◦C. The appearance of p-nitrophenol
was monitored at 410 nm. Data for every single shot were simulated
with single, double or treble-exponential kinetics models, and the
best-fit rate constants and amplitudes were calculated.
20 N. S. Isaacs, Physical Organic Chemistry, Longman Press, Harlow,
1987, pp. 131–146.
21 I.-H. Um, E.-K. Chung and D.-S. Kwon, Tetrahedron Lett., 1997, 38,
4787–4790.
22 U. T. Bornschauer, G. Rodriguez Ordonez, A. Hidalgo, A. Gollin, J.
Lyon, T. S. Hitchman and D. P. Weiner, J. Mol. Catal. B: Enzym., 2005,
36, 8–13.
23 M. L. Bender and K. Nakamura, J. Am. Chem. Soc., 1962, 84, 2577–
2582.
24 L. T. Kanerva and A. M. Klibanov, J. Am. Chem. Soc., 1989, 111,
6864–6865.
25 H. Gutfreund and J. M. Sturtevant, Biochem. J., 1956, 63, 656–661.
26 C. Chapus, M. Se´me´riva, C. Bovier-Lapierre and P. Desnuelle, Bio-
chemistry, 1976, 15, 4980–4987.
27 G. J. C. Paul and P. Kebarle, J. Phys. Chem., 1990, 94, 5184–5189.
28 R. Chang, Physical Chemistry for the Chemical and Biological Sciences,
University Science Books, Sausalito, California, 2000, p. 254.
29 J. D. Cheeseman, A. Tocilj, S. Park, J. D. Schrag and R. J. Ka-
zlauskas, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2004, D60, 1237–
1243.
Acknowledgements
This work was supported by BBSRC (research grant B20467).
We are grateful to Professor R. J. Kazlauskas (University of
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 507–513 | 513
©