4
Tetrahedron Letters
Figure 1. Possible mechanism for oxidation of phenylboronic acid
29. Wagh, R. B.; Gund, S. H.; Nagarkar, J, M. J. Chem. Sci.
Acknowledgments
2016, 128, 1321-1325.
30. Typical Procedure for the preparation of silica chloride:
To well-stirred silica gel (20 g) in CH2Cl2 (50 mL) was
added drop wise SOCl2 (20 g) at room temperature.
Evolution of copious amounts of HCl and SO2 occurred
instantaneously. After stirring for 1 h, the solvent was
removed to dryness under reduced pressure. The resulting
white-grayish powder of silica chloride could be stored in
sealed vessels for 6 months without any critical decline in
activity. The amount of chloride in SC (2.6 mmol of Cl per g
silica) is calculated by a standard procedure.27(b)
The author (RBW) is greatly thankful to the UGC (University
Grant Commission, India) for the award of research fellowship.
References and notes
1. Tyman, J. H. P. Synthetic and Natural Phenols, Elsevier, New
York: 1996.
2. Owen, R. W.; Giacosa, A.; Haubner, R.; Spiegel-hader, B.;
Bartsch, H. Eur. J. Cancer 2000, 36, 1235-1247.
3. Pilato, L. React. Funct. Polym. 2013, 73, 270-277.
4. Ji, Y.; Li, P.; Zhang, X.; Wang, L. Org. Biomol. Chem.
2013, 11, 4095-4101.
5. Rappoport, Z. The Chemistry of Phenols, Wiley-VCH:
Weinheim, 2003.
6. Hall, D. G. Boronic Acids: Preparation and Applications in
organic synthesis and Medicine, Wiley-VCH: Weinheim,
2007.
7. Suzuki, A. Angew. Chem., Int. ed. 2011, 50, 6722-6737.
8. Xu, J.; Wang, X.; Shao, C.; Su, D.; Cheng, G.; Hu, Y.
Org. Lett. 2010, 12, 1964.
9. Gogoi, N.; Gogoi, P.; Borah, G.; Bora, U. Tetrahedron Lett.
2016, 57, 4050-4052.
10. Zhu, C.; Wang. R.; Falck, J. R. Org. Lett. 2012, 14, 3494-
3497.
11. Gogoi, P.; Bezboruah, P.; Gogoi, J.; Boruah, R. C. Eur. J. Org.
Chem. 2013, 32, 7291-7294.
31. General procedure for the oxidation of arylboronic acids to
phenols (Table 5):
An oven-dried Schlenk flask was allowed to cool to room
temperature and charged sequentially with arylboronic acid (1
mmol), MeCN (3.0 mL) and silica chloride (0.5 mmol). The
reaction was then activated by addition of 30% H2O2 (1.0
equiv.) and stirred at 30-35 °C for the required time
as given in Table 5. The progress of reaction was monitored
by TLC. After complete conversion of starting material, the
reaction mixture was filtered to remove silica gel. The
reaction mixture was neutralized with 5% NaHCO3 solution
(5 mL). Then the product was extracted with ethyl acetate (30
mL) and subsequently washed with distilled water (10 mL).
The organic extract was dried over Na2SO4 and the solvent
was removed under reduced pressure. The resultant product
was purified by column chromatography using silica gel with
n-hexane and ethyl acetate as solvent to get the pure product.
The structure of the product was confirmed by GC-MS,
M.P. and 1H NMR spectroscopic techniques.
12. Kinmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett.
2007, 48, 2713-2715.
13. Webb, K. S.; Levy, D. Tetrahedron Lett. 1995, 36, 5117-5118.
14. Chen, D. S.; Huang, J. M. Synlett 2013, 24, 499-501.
15. Gogoi, A.; Bora, U. Synlett 2012, 7, 1079-1081.
16. Gogoi, A.; Bora, U. Tetrahedron Lett. 2013, 54, 1821-1823.
17. Wang, L.; Dai, D. Y.; Chen, Q.; He, M. Y, Asian J. Org.
Chem. 2013, 2, 1040-1043.
18. Gogoi, K.; Dewan, A.; Gogoi, A.; Borah, G.; Bora, U.
Heteroatom Chem. 2014, 25, 127-130.
19. Gohin, M.; Plessis, M. D.; Tonder, J. H. V.; Bezuidenhoudt, B.
C. B. Tetrahedron Lett. 2014, 55, 2082-2084.
20. Mahanta, M.; Adhikari, P.; Bora, U.; Thakur, A. J.
Tetrahedron Lett. 2015, 56, 1780-1783.
Supplementary Material
Supplementary material that may be helpful in the review
process should be prepared and provided as a separate electronic
file. That file can then be transformed into PDF format and
submitted along with the manuscript and graphic files to the
appropriate editorial office.
21. Sawant, S. D.; Hudwekar, A. D.; Kumar, K. A. A.;
Venkateswarlu, V.; Singh, P. P.; Vishwakarma, R. A.
Tetrahedron Lett. 2014, 55, 811-814.
22. Kamitori, Y.; Hojo, M.; Masuda, R.; Kimura, T.; Yoshida, T.
J. Org. Chem. 1986, 51, 1427-1431.
23. Firouzabadi, H.; Iranpoor, N.; Karimi, B.; Hazarkhani, H.
Synlett 2000, 2, 263-265.
24. Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H.; Karimi, B.
J. Org. Chem. 2002, 67, 2572-2576.
25. Srinivas, K. V.N. S.; Mahender. I.; Das, B.
Synthesis 2003, 16, 2479-2482.
26. Sathe, M.; Gupta, A. K.; Kaushik, M. P. Tetrahedron Lett.
2006, 47, 3107-3109.
27. (a) Karade, H.; Sathe, M.; Kaushik, M. P. Catal. Commun.
2007, 8, 741-746 (b) Zolfigol, M. A.; Madrakian, T.; Ghaemi,
E.; Afkhami, A. A.; Aziziana, S.; Afsharb, S. Green Chem.
2002, 4, 611-614.
28. Wagh, R. B.; Nagarkar, J. M. Catal. Lett. 2017, 147, 181-187.