4
Tetrahedron
2
s
95
1
2
9
0
S
OH
F
F
7
7
8
4
HO
HO
2t
OMe
2
2
1
2u
F
F
F
4
0
9
9
3.5 (85 )
2
3
HO
HO
F
F
2
v
2w
0
2
CH3
a
Reagents and conditions: ArB(OH)
2
2 2 2
(5 mmol), PVP-I (0.03 equiv. of effective iodine), H O (30% aq, 1 mL), H O (2 mL), ca 30
b
c
°
C. Yield of isolated product. Numbers in parentheses are the literature values.
The catalytic mechanism of reaction is similar to that of depicted by Bora.31 What needs to be pointed out is that the current optimal
condition is more efficient than that of Bora’s condition, (more substrates loading amount and less effective iodine and hydrogen
peroxide usage). The reasonable explanation is that povidone (PVD) can form complexes with hydrogen peroxide and iodine
simultaneously, and it reduces the decomposition of hydrogen peroxide and loss of iodine in catalytic cycles.
In conclusion, a mild and efficient catalytic oxidative ipso-hydroxylation of arylboronic acids to the corresponding phenol catalyzed
by povidone iodine has been developed using hydrogen peroxide in aqueous medium. This transformation proceeded smoothly with
wide substrate scope, simple work-up procedure, ambient-pressure, short reaction time and room temperature conditions. Further
exploration of this new catalyst system in other types of reactions is underway in our laboratory.
Acknowledgments
This work was financially supported by Science and Technology Commission of Shanghai Municipality (14DZ1900102) and the
Fundamental Research Funds for the Central University (WY1113007).
References and notes
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
.
.
.
.
.
.
.
.
.
Rappoport, Z. The Chemistry of Phenols; 2003, Wiley-VCH: Weinheim.
Tyman, J. H. P. Synthetic and Natural Phenols; 1996, Elsevier: New York.
Simon, J.; Salzbrunn, S.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. J. Org. Chem. 2001, 66, 633-634.
Kuivila, H. G. J. Am. Chem. Soc. 1954, 76, 870-874.
Ainley, A. D. C., Frederick. J. Chem. Soc. 1930, 2171-2180.
Yang, D.; An, B.; Wei, W.; Jiang, M.; You, J.; Wang, H. Tetrahedron 2014, 70, 3630-3634.
Yang, H.; Li, Y.; Jiang, M.; Wang, J.; Fu, H. Chem.Eur. J. 2011, 17, 5652-60.
Inamoto, K.; Nozawa, K.; Yonemoto, M.; Kondo, Y. Chem. Commun. 2011, 47, 11775-7.
Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Eur. J. Org. Chem. 2011, 6656-6662.
0. Xu, J. M.; Wang, X. Y.; Shao, C. W.; Su, D. Y.; Cheng, G. L.; Hu, Y. F. Org. Lett. 2010, 12, 1964-1967.
1. Affrose, A.; Azath, I. A.; Dhakshinamoorthy, A.; Pitchumani, K. J. Mol. Catal. A-Chem. 2014, 395, 500-505.
2. Dar, B. A.; Bhatti, P.; Singh, A. P.; Lazar, A.; Sharma, P. R.; Sharma, M.; Singh, B. Appl Catal A-Gen. 2013, 466, 60-67.
3. Zhao, S.; Wang, Z. Chinese J. Org. Chem. 2016, 36, 862.
4. Sawant, S. D.; Hudwekar, A. D.; Aravinda Kumar, K. A.; Venkateswarlu, V.; Singh, P. P.; Vishwakarma, R. A. Tetrahedron Lett. 2014, 55, 811-814.
5. Begum, T.; Gogoi, A.; Gogoi, P. K.; Bora, U. Tetrahedron Lett. 2015, 56, 95-97.
6. Hatamifard, A.; Nasrollahzadeh, M.; Sajadi, S. M. New J.Chem. 2016, 40, 2501-2513.
7. Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jorgensen, K. A.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 784-788.
8. Chowdhury, A. D.; Mobin, S. M.; Mukherjee, S.; Bhaduri, S.; Lahiri, G. K. Eur. J. Inorg. Chem. 2011, 2011, 3232-3239.
9. Gogoi, A.; Bora, U. Tetrahedron Lett. 2013, 54, 1821-1823.
0. Toyao, T.; Ueno, N.; Miyahara, K.; Matsui, Y.; Kim, T. H.; Horiuchi, Y.; Ikeda, H.; Matsuoka, M. Chem. Commun. 2015, 51, 16103-16106.
1. Ding, W.; Chen, J. R.; Zou, Y. Q.; Duan, S. W.; Lu, L. Q.; Xiao, W. J. Org. Chem. Front. 2014, 1, 151-154.
2. Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. J. Am. Chem. Soc. 2013, 135, 13286-13289.
3. Jiang, M.; Li, Y.; Yang, H. J.; Zong, R. L.; Jin, Y. H.; Fu, H. Rsc Adv. 2014, 4, 12977-12980.
4. Kotoucova, H.; Strnadova, I.; Kovandova, M.; Chudoba, J.; Dvorakova, H.; Cibulka, R. Org. Biomol. Chem. 2014, 12, 2137-2142.
5. Chatterjee, N.; Goswami, A. Tetrahedron Lett. 2015, 56, 1524-1527.
6. Paul, A.; Chatterjee, D.; Rajkamal; Halder, T.; Banerjee, S.; Yadav, S. Tetrahedron Lett. 2015, 56, 2496-2499.