M. J. Belousoff, B. Graham, L. Spiccia
FULL PAPER
1.12 mmol). Yield 0.49 g, 69%. ESI-MS: m/z = 209.1895 [M +
bis(4-nitrophenyl)phosphate, BNPP, by the CuII complexes was
1
2H]2+, 417.3698 [M + H]+. H NMR (400 MHz, D2O): δ = 7.7757 measured at pH 7.4 (MOPS buffer) and T = 50 °C by following
(AB quartet, J1 = 3.56, J2 = 4.96 Hz, 2 H, aromatic CH), 7.6142
the formation of p-nitrophenolate ion (λmax = 400 nm, εmax =
(AB quartet, J1 = 3.56, J2 = 4.96 Hz, 2 H, aromatic CH), 4.283 (s, 18700 –1 cm–1) in solution containing 15 µ BNPP, 1 m CuII
4 H, benzyl CH2), 3.8021 (br., 8 H, tacn ring CH2), 3.4144 (br., 6 complex and I = 0.15 (NaClO4), with a Varian Cary 300 spectro-
H, tacn ring CH2), 3.2467 (br., 10 H, tacn ring CH2), 2.9855 (s, 12
photometer. Absorbance measurements were commenced after
H, N-CH3) ppm. 13C NMR (400 MHz, D2O): δ = 131.90, 129.53, 2 min and were continued for 8000 min with a reading taken every
62.32, 55.13, 53.24, 51.46, 48.62, 44.49, 30.34 ppm.
5 min. As the complex was in large excess compared to BNPP, the
appearance of NP (and cleavage of BNPP) was modelled as a first-
order process, Abs = A + Bekobsd.t, for Co, and using the initial rates
method for Cm, as per previous studies.[6,7]
[Cu2(µ-AcO)2(Lmemx)](ClO4)2·H2O (Cm): Aqueous solutions of Cu-
(ClO4)2·6H2O (100 m, 1 mL) and Cu(ac)2·H2O (100 m, 1 mL)
were added to an aqueous solution of Lmemx·6HCl (96 m, 2 mL).
The pH of the resulting solution was adjusted to pH 7.0 with so-
dium hydroxide, upon which the colour became a deep royal blue.
The solution was carefully taken to dryness under vacuum and the
resulting solid residue dissolved in acetonitrile and filtered. Diethyl
ether was diffused into the filtrate, upon which green crystals
formed. Yield 68 mg, 40%. UV/Vis (H2O): λmax (εmax, –1 cm–1) =
Crystallography: Intensity data for a green crystal of Cm and a dark
blue crystal of Co were measured at 123 K with a Nonius Kappa
CCD fitted with graphite-monochromated Mo-Kα radiation
(0.71073 Å). The data were collected to a maximum 2θ value of
55o and processed using the Nonius software. Crystal parameters
and details of the data collection are summarised in Table 4. Both
structures were solved by direct methods and expanded using stan-
dard Fourier routines in the SHELX-97 software package.[47,48] All
hydrogen atoms were placed in idealised positions, and all non-
hydrogen atoms were refined anisotropically.
272 (7100), 668 nm (56). IR: ν = 2924 (s), 2869 (s), 1572 (s), 1492
˜
(w), 1466 (s), 1432 (s), 1420 (s), 1347 (w), 1324 (w), 1292 (w), 1253
(w), 1224 (w), 1090 (br), 1012 (m), 984 (m), 890 (w), 821 (m), 787
(w), 753 (w), 714 (w), 668 (w), 624 (s) cm–1. C28H58Cl2Cu2N6O16
(930.8): calcd. C 36.8, H 6.2, N 9.2; found C 36.0, H 5.9, ⁿ 9.2.
[Cu2(η-AcO)2(Lmeox)](ClO4)2 (Co): Aqueous solutions of Cu(ClO4)2·
6H2O (100 m, 0.26 mL) and Cu(ac)2·H2O (100 m, 0.26 mL)
were added to an aqueous solution of Lmeox·6HCl (120 m,
0.5 mL). The pH of the resulting solution was adjusted to pH 7.0
with sodium hydroxide, upon which the colour became a deep royal
blue. Work-up as described for the synthesis of Cm gave blue crys-
tals of Co. Yield 36 mg, 69%. UV/Vis (H2O): λmax (εmax, –1 cm–1)
CCDC-610106 (for Cm) and -610107 (for Co) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/datarequest/cif.
[1] F. H. Zelder, A. A. Mokhir, R. Kramer, Inorg. Chem. 2003, 42,
8618–8620.
[2] E. L. Hegg, J. N. Burstyn, Inorg. Chem. 1996, 35, 7474–7481.
[3] E. L. Hegg, J. N. Burstyn, K. A. Deal, L. L. Kiessling, Inorg.
Chem. 1997, 36, 1715–1718.
[4] E. L. Hegg, J. N. Burstyn, Coord. Chem. Rev. 1998, 173, 133–
165.
[5] M. J. Belousoff, M. B. Duriska, B. Graham, S. R. Batten, B.
Moubaraki, K. S. Murray, L. Spiccia, Inorg. Chem. 2006, 45,
3746.
= 274 (7400), 668 nm (68). IR: ν = 3443 (br), 2927 (m), 2875 (m),
˜
2832 (w), 1560 (m), 1508 (s), 1498 (s), 1460 (s), 1472 (s), 1411 (s),
1331 (m), 1299 (m), 1201 (w), 1095 (br. s), 995 (m), 974 (w), 946
(m), 902 (w), 836 (w), 818 (w), 792 (m), 747 (m), 736 (w), 696 (m),
658 (w), 624 (s) cm–1. C28H50Cl2Cu2N6O12 (860.7): calcd. C 39.1,
H 5.9, N 9.8; found C 39.1, H 6.0, N 10.3.
[6] K. A. Deal, J. N. Burstyn, Inorg. Chem. 1996, 35, 2792–2798.
[7] F. Fry, A. J. Fischmann, M. J. Belousoff, L. Spiccia, J. Brugger,
Inorg. Chem. 2005, 44, 941.
[8] F. H. Fry, P. Jensen, C. M. Kepert, L. Spiccia, Inorg. Chem.
2003, 42, 5637.
[9] E. L. Hegg, J. N. Burstyn, J. Am. Chem. Soc. 1995, 117, 7015–
7016.
Crystals of the complexes suitable for X-ray crystallography were
obtained through slow evaporation of solutions of the complexes
in 30% acetonitrile/1 NaClO4.
Phosphate Ester Cleavage Kinetics: These experiments were con-
ducted as described previously.[5,7] Briefly, the rate of cleavage of
[10] K. P. McCue, J. R. Morrow, Inorg. Chem. 1999, 38, 6136–6142.
[11] K. M. Deck, T. A. Tseng, J. N. Burstyn, Inorg. Chem. 2002, 41,
669–677.
Table 4. Crystal collection parameters for Cm·H2O and Co.
Crystal
Cm
Co
[12] A. Vogel, F. Spener, B. Krebs, Purple Acid Phosphatase in
Handbook of Metalloproteins, vol. 2, p. 752, Wiley, Chichester,
2001.
[13] E. R. Kantrowitz, Handbook of Metalloproteins (Eds.: A. Mes-
serschmidt, W. Bode, M. Cygler), vol. 3, p. 71, Wiley, 2004,.
[14] E. E. Kim, H. W. Wyckoff, J. Mol. Biol. 1991, 218, 449.
[15] T. Knofel, N. Strater, J. Mol. Biol. 2001, 309, 239.
[16] L. W. Guddat, A. S. McAlpine, D. Hume, S. Hamilton, J. Jer-
sey, J. L. Martin, Structure 1999, 7, 757.
Empirical formula
C28H52Cl2Cu2N6O13 C28H50Cl2Cu2N6O12
M [gmol–1
]
878.75
860.72
Crystal system
Space group
a [Å]
b [Å]
c [Å]
monoclinic
P21/n
orthorhombic
Pbca
15.029(3)
11.507(2)
21.503(4)
96.00(3)
3698.4(13)
4
15.041(3)
19.082(4)
25.166(5)
β [°]
Volume [Å3]
Z
7223(2)
8
[17] O. Iranzo, J. P. Richard, J. R. Morrow, T. Elmer, Inorg. Chem.
2003, 42, 7737–7746.
µ (Mo-Kα) [mm–1
]
1.364
1.393
[18] O. Iranzo, J. P. Richard, J. R. Morrow, A. Y. Kovalevsky, J. Am.
Chem. Soc. 2003, 125, 1988–1993.
Dc [gcm–3
]
1.578
1.583
Data measured
90662
66176
[19] M.-Y. Yang, J. P. Richard, J. R. Morrow, Chem. Commun. 2003,
Unique data (Rint
)
8495 (0.0820)
6361
8260 (0.1803)
3578
2832.
Observed data [I Ͼ2σI]
[20] F. Fry, L. Spiccia, P. Jensen, B. Moubaraki, K. Murray, E. R. T.
Tiekink, Inorg. Chem. 2003, 42, 5594–5603.
[21] L. J. Farrugia, P. A. Lovatt, R. D. Peacock, J. Chem. Soc., Dal-
ton Trans. 1997, 911.
[b]
Final R1[a], wR2 (obsd. data) 0.0539[a], 0.1326[b]
0.0697[a], 0.1363[b]
0.2005, 0.1880
–0.903, 0.700
Final R1, wR2 (all data)
0.0868, 0.1729
–1.238, 0.861
ρmin, ρmax [eÅ3]
[a] R = Σ(|Fo| – |Fc|)/Σ|Fo|. [b] RЈ = [Σw(|Fo| – |Fc|)2/ΣFo
w = [σ2(Fo)]–1.
]
2 1/2, where [22] E. L. Hegg, S. H. Mortimore, C. L. Cheung, J. E. Huyett, D. R.
Powell, J. N. Burstyn, Inorg. Chem. 1998, 38, 2691–2698.
4138
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 4133–4139