1
68
E. Yilmaz et al. / Journal of Molecular Catalysis B: Enzymatic 62 (2010) 162–168
[
[
[
[
5] S.L. Atkin, S. Beckett, G. Mackenzie, USA Patent 20050002963, 2005.
6] D. Avnir, S. Braun, O. Lev, M. Ottolenghi, Chem. Mater. 6 (1994) 1605–1614.
7] D. Avnir, Acc. Chem. Res. 28 (1995) 328–334.
8] L.M. Ellerby, C.R. Nishida, F. Nishida, S.A. Yamanaka, B. Dunn, J.S. Valentine, J.I.
Zink, Science 255 (1992) 1113–1115.
[
9] C.J. Brinker, G.W. Scherer, Sol–gel Science: The physics and chemistry of sol–gel
processing, Academic Press, Boston, 1990.
[
[
10] M. Glad, O. Norrlow, B. Sellergren, N. Siegbahn, K. Mosbach, J. Chromatogr. 347
1985) 11–23.
11] D.L. Venton, K.L. Cheesman, R.T. Chatterton, T.L. Anderson, Biochim. Biophys.
Acta 797 (1984) 343–347.
(
[
[
[
12] Y. Chevalier, Curr. Opin. Colloid Interface Sci. 7 (2002) 3–11.
13] T. Coradin, P.J. Lopez, Chem. Biol. Chem. 4 (2003) 251–259.
14] M.T. Reetz, P. Tielmann, W. Wisenhofer, W. Konen, A. Zonta, Adv. Synth. Catal.
345 (2003) 717–728.
[
[
[
15] Y. Zhou, J.H. Schatka, M. Antonietti, Nano Lett. 4 (2004) 477–481.
16] M.T. Reetz, A. Zonta, J. Simplekamp. Biotechnol. Bioeng. 49 (1996) 527–534.
17] H.R. Luckarift, J.C. Spain, R.R. Naik, M.O. Stone, Nat. Biotechnol. 22 (2004)
211–213.
Fig. 8. Reusability on the conversion (x) in the hydrolysis of racemic Naproxen
methyl ester.
[18] Q. Sun, E.G. Vrieling, R.A. van Santen, N.A.J.M. Sommerdikj, Curr. Opin. Solid
State Mater. Sci. 8 (2004) 111–120.
[
19] A.R. Bassindale, K.F. Brandstadt, T.H. Lane, P.G. Taylor, Polym. Prep. 44 (2003)
70–571.
After the encapsulation of CRL in the presence of sporopollenin
and activated sporopollenin, the encapsulated lipases were not sol-
uble in water due to an increase in the cross-linked bond between
the enzymes. Thus, it was used in the reusability studies, where
after each run; the encapsulated lipases were washed with PBS.
It was found that the percent conversion (x) of the encapsulated
lipase decreases after the fourth usage. Fig. 8 shows that the encap-
sulated lipases were still retained 27% and 3% of their conversion
ratios for sporopollenin and activated sporopollenin after the 5th
reuse, respectively. These results are due to the inactivation of the
enzyme denaturation of protein and the leakage of protein from
the supports upon use.
5
[20] J.N. Cha, K. Shimizu, Y. Zhou, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, D.E.
Morse, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 361–365.
[
[
21] J.C. Santos, H.F. Castro, World J. Microbiol. Biotechnol. 22 (2006) 1007–1011.
22] J.M. Guisan, Immobilization of Enzymes and Cells, Humana Press, New Jersey,
2006.
[
[
23] J.C. Santos, P.D. Mijone, G.F.M. Nunes, V.H. Perez, H.F. Castro, Colloid Surf. B 61
(
2008) 229–236.
24] A.L. Margolin, Enzyme Microb. Technol. 15 (1993) 266–279.
[25] S.W. Tsai, S.F. Lin, C.S. Chang, J. Chem. Technol. Biotechnol. 74 (1999) 751–758.
[
[
[
26] H.Y. Lin, S.W. Tsai, J. Mol. Catal. B: Enzyme 24–25 (2003) 111–120.
27] E.G. Lee, B.H. Chung, in: K.J. Biotechnol (Ed.), Bioenginnering 15 (2000) 415–422.
28] C. Giordano, G. Castaldi, Tetrahedron 45 (1990) 4243–4252.
[29] Y.M. Cui, D.Z. Wei, J.T. Yu, Biotechnol. Lett. 19 (1997) 865–868.
[
[
[
30] Y. Xu, J. Chen, J. Xin, S. Li, C. Xia, J. Cui, Biotechnol. Lett. 23 (2001) 1975–1979.
31] C.S. Chang, S.W. Tsai, Enzyme Microbial. Technol. 20 (1997) 635–639.
32] C.S. Chang, S.W. Tsai, Appl. Biochem. Biotechnol. 68 (1997) 135–142.
4
. Conclusions
[33] S.W. Tsai, C.C. Lu, C.S. Chang, Biotechnol. Bioeng. 51 (1996) 148–156.
[
[
[
34] S. Takac, A.E. Ünlü, Prep. Biochem. Biotechnol. 39 (2009) 124–141.
35] E.G. Lee, H.S. Won, B.H. Chung, Process Biochem. 37 (2001) 293–298.
36] S. Takac, D. Mutlu, Appl. Biochem. Biot. 141 (2007) 15–26.
Sporopollenin was for the first time utilized to encapsulate
lipases, and the prepared enzyme by polycondensation with
tetraethoxysilane (TEOS) exhibited the highest activity in both
the hydrolysis of p-nitrophenyl palmitate and the enantioselective
hydrolysis of rasemic Naproxen. It was observed that the encap-
sulated sporopollenin (Spo-E) was found to give 71 U/g of support
with 88.8% activity yield, while Spoact-E was found to give 68.4 U/g
of support with 61.74% activity yield. Furthermore, the immobi-
lized lipase retained 95% (Spo-E) and 93% (Spoact-E) of their initial
activity after 50-d application, while the free enzyme left 15% after
only 12 d. It was observed that excellent enantioselectivity (E > 400)
was obtained for most lipase preparations in this work (E = 166 for
the free enzyme) with an ee value of S-Naproxen about 98%. On
the basis of these results, we recommend immobilized lipases as a
prospective preparation for continuous industrial applications. And
the sol–gel method was worthy of further investigations to achieve
higher activity and stability of enzymes compared to conventional
immobilization method.
[37] S. Takac, M. Bakkal, Process Biochem. 42 (2007) 1021–1027.
[38] S. Salgin, S. Takac, Chem. Eng. Technol. 30 (2007) 1739–1743.
[39] V.N. Paunov, G. Mackenzie, S.D. Stoyanov, J. Mater. Chem. 17 (2007) 609–612.
[40] P. Lotrakul, S. Dharmsthiti, World J. Microb. Biot. 13 (1997) 163–166.
[41] M.M. Bradford, Anal. Biochem. 72 (1976) 248–254.
[42] J.Y. Wu, S.W. Liu, Enzyme Microbial. Technol. 26 (2000) 124–130.
[
43] C.S. Chen, Y. Fujimoto, G. Girdaukas, C.J. Sih, J. Am. Chem. Soc. 104 (1982)
294–7299.
44] I.J. Colton, S.N. Ahmed, R.J. Kazlauskas, J. Org. Chem. 60 (1995) 212–217.
7
[
[45] K. Zhu, A. Jutila, E.K.J. Tuominen, S.A. Patkar, A. Svendsen, P.K.J. Kinnunen, BBA-
Protein Struct. Mol. Enzyme 1547 (2001) 329–338.
[
[
46] A. Cipiciani, F. Bellezza, J. Mol. Catal. B: Enzyme 17 (2002) 261–266.
47] K. Faber, G. Ottolina, S. Riva, Biocatalysis 8 (1993) 91–132.
[48] H. Tutar, E. Yilmaz, E. Pehlivan, M. Yilmaz, Int. J. Biol. Macromol. 45 (2009)
15–320.
49] E.B. Pereira, H.F. Castro, F.F. Moraes, G.M. Zanin, Appl. Biochem. Biotechnol. 91
2001) 739–752.
[50] J.M. Oh, D.H. Lee, Y.S. Song, S.G. Lee, S.W. Kim, J. Ind. Eng. Chem. 13 (2007)
29–433.
3
[
(
4
[
[
51] M.Y. Arica, J. Appl. Polym. Sci. 77 (2000) 2000–2008.
52] M.Y. Arica, G. Bayramoglu, J. Mol. Catal. B: Enzyme 27 (2004) 255–265.
[53] S.D. Phadtare, V. Britto, A. Pundle, A. Prabhune, M. Sastry, Biotechnol. Progr. 20
2004) 156–161.
(
[
[
[
54] P. Ye, Z.K. Xu, A.F. Che, J. Wu, P. Seta, Biomaterials 26 (2005) 6394–6403.
55] P. Ye, J. Jianga, Z.K. Xu, Colloid Surf. B 60 (2007) 62–67.
56] E.Y. Ozmen, M. Sezgin, M. Yilmaz, J. Mol. Catal. B: Enzyme 57 (2009) 109–114.
Acknowledgement
We thank the Scientific Research Foundation of Selcuk Univer-
sity, Konya, Turkey (BAP—grant number: 08101024) for financial
support of this work.
[57] S. Erdemir, M. Yilmaz, J. Mol. Catal. B: Enzyme 58 (2009) 29–35.
[
[
58] R. Dave, D. Madamwar, Process Biochem. 41 (2006) 951–955.
59] H.R. Luckarift, J.C. Spain, J.C. Naik, M.O. Stone, Nat. Biotechnol. 22 (2004)
211–223.
[
[
[
[
60] P. Ye, Z.K. Xu, J. Wu, C. Innocent, P. Seta, Biomaterials 27 (2006) 4169–4176.
61] K. Abrol, G.N. Qazi, A.K. Ghos, J. Biotechnol. 128 (2007) 838–848.
62] S.F. Li, J.P. Chen, W.T. Wu, J. Mol. Catal. B: Enzyme 47 (2007) 117–127.
63] M. Basri, K. Ampon, W.M.Z. Yunus, C.N.A. Razak, A.B. Salleh, J. Chem. Technol.
Biotechnol. 59 (1994) 37–44.
References
[
[
[
[
1] U.S. Vural, M. Ersoz, M. Pehlivan, J. Appl. Polym. Sci. 58 (1995) 2423–2428.
2] G. Bohne, E. Richter, E.R. Wohlcke, Ann. Bot. 92 (2003) 289–297.
3] M. Ersoz, S. Yildiz, E. Pehlivan, J. Chromatogr. Sci. 31 (1993) 61–63.
4] E. Pehlivan, M. Ersoz, S. Yildiz, H. Duncan, Sep. Sci. Technol. 29 (1994)
[64] S.W. Tsai, C.C. Chen, H.S. Yang, I.S. Ng, T.L. Chen, BBA-Proteins Proteom. 1764
(2006) 1424–1428.
[65] A. Chaubey, R. Parshad, S. Koul, S.C. Taneja, G.N. Qazi, J. Mol. Catal. B: Enzyme
42 (2006) 39–44.
1
757–1768.