A. Innocenti, C. T. Supuran / Bioorg. Med. Chem. Lett. 20 (2010) 6208–6212
6211
substrate, at least six traces of the initial 5–10% of the reaction have been used
for determining the initial velocity. The uncatalyzed rates were determined in
the same manner and subtracted from the total observed rates. Stock solutions
of inhibitor (10 mM) were prepared in distilled-deionized water and dilutions
up to 0.01 nM were done thereafter with distilled-deionized water. Inhibitor
and enzyme solutions were preincubated together for 15 min at room
temperature prior to assay, in order to allow for the formation of the E-I
complex. The inhibition constants were obtained by non-linear least-squares
methods using PRISM 3, whereas the kinetic parameters for the uninhibited
enzymes from Lineweaver–Burk plots, as reported earlier,11 and represent the
mean from at least three different determinations.
Acknowledgments
Research from our laboratory was financed by a grant of the 7th
FP of EU (Metoxia project).
References and notes
1. (a) Supuran, C. T. Nat. Rev. Drug Disc. 2008, 7, 168; (b) Supuran, C. T. Bioorg. Med.
Chem. Lett. 2010, 20, 3467.
19. Pocker, Y.; Stone, J. T. Biochemistry 1968, 7, 2936. 4-Nitrophenyl acetate
(4-NPA) hydrolysis was monitored by measuring the absorbance at 405 nm of
2. (a) Supuran, C. T. Carbonic Anhydrases as Drug Targets—General Presentation.
In Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease
Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken, NJ, 2009; pp
15–38; (b) Winum, J. Y.; Rami, M.; Scozzafava, A.; Montero, J. L.; Supuran, C.
Med. Res. Rev. 2008, 28, 445; (c) Supuran, C. T.; Scozzafava, A.; Casini, A. Med.
Res. Rev. 2003, 23, 146; (d) Silverman, D. N. Biochim. Biophys. Acta 2010, 1804,
243; (e) Domsic, J. F.; Avvaru, B. S.; Kim, C. U.; Gruner, S. M.; Agbandje-
McKenna, M.; Silverman, D. N.; McKenna, R. J. Biol. Chem. 2008, 283, 30766.
3. (a) Ferry, J. F. Biochim. Biophys. Acta 2010, 1804, 374; (b) Smith, K. S.; Jakubzick,
C.; Whittam, T. S.; Ferry, J. G. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 15184; (c)
Zimmerman, S. A.; Tomb, J. F.; Ferry, J. G. J. Bacteriol. 2010, 192, 1353; (d)
Zimmerman, S. A.; Ferry, J. G.; Supuran, C. T. Curr. Top. Med. Chem. 2007, 7, 901;
(e) Elleuche, S.; Pöggeler, S. Microbiology 2010, 156, 23.
the chromogenic compound 4-nitrophenol
2 which is released by the
hydrolysis of the ester (extinction coefficient of 10510 Mꢀ1).11 Reactions
were performed at 25 °C in a quartz cuvette with 1 cm light-path, using a
Perkin Elmer Lambda Bio20 UV–vis spectrometer. Enzyme concentrations
were between 0.10 and 5.0 lM and substrate concentration between 0.08 and
0.37 mM. The substrate was dissolved in freshly distilled acetonitrile and
diluted with buffer (10 mM HEPES and 10 mM Tris, pH 7.4, maintaining the
ionic strength constant by addition of 0.1 M sodium sulfate, in such a way that
the final concentration of MeCN was of 5%). Kinetic parameters were
determined (in cases in which the substrate solubility allowed this, i.e.,
concentrations of 4-NPA of 0.3–5.0 mM) by fitting the data to the Michaelis–
Menten model (Eq. 1):
4. (a) Xu, Y.; Feng, L.; Jeffrey, P. D.; Shi, Y.; Morel, F. M. Nature 2008, 452, 56; (b)
Cox, E. H.; McLendon, G. L.; Morel, F. M.; Lane, T. W.; Prince, R. C.; Pickering, I. J.;
George, G. N. Biochemistry 2000, 39, 12128; (c) Lane, T. W.; Morel, F. M. Proc.
Natl. Acad. Sci. U.S.A. 2000, 97, 4627.
5. (a) Pastorekova; Parkkila, S.; Pastorek, J.; Supuran, C. T. J. Enzyme Inhib. Med.
Chem. 2004, 19, 199; (b) Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Expert
Opin. Ther. Pat. 2006, 16, 1627; (c) Ebbesen, P.; Pettersen, E. O.; Gorr, T. A.; Jobst,
G.; Williams, K.; Kienninger, J.; Wenger, R. H.; Pastorekova, S.; Dubois, L.;
Lambin, P.; Wouters, B. G.; Supuran, C. T.; Poellinger, L.; Ratcliffe, P.; Kanopka,
A.; Görlach, A.; Gasmann, M.; Harris, A. L.; Maxwell, P.; Scozzafava, A. J. Enzyme
Inhib. Med. Chem. 2009, 24, 1.
Vo ¼ ðkcat½Eꢂ0½Sꢂ0Þ=ð½Sꢂ0 þ KM
Þ
ð1Þ
linear fit (Eq. 2) by using
ð2Þ
Otherwise, kcat/KM values were derived from
a
PRISM:11
Vo ¼ ½Eꢂ0½Sꢂ0ðkcat=KM
Þ
6. (a) Supuran, C. T. Curr. Pharm. Des. 2008, 14, 641; (b) Supuran, C. T.; Di Fiore, A.;
De Simone, G. Expert Opin. Emerg. Drugs 2008, 13, 383; (c) De Simone, G.; Di
Fiore, A.; Supuran, C. T. Curr. Pharm. Des. 2008, 14, 655; (d) Mincione, F.;
Scozzafava, A.; Supuran, C. T. Antiglaucoma Carbonic Anhydrase Inhibitors as
Ophthalomologic Drugs. In Drug Design of Zinc-Enzyme Inhibitors: Functional,
Structural, and Disease Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley:
Hoboken, NJ, 2009; pp 139–154; (e) Krungkrai, J.; Supuran, C. T. Curr. Pharm.
Des. 2008, 14, 631; (f) Borras, J.; Scozzafava, A.; Menabuoni, L.; Mincione, F.;
Briganti, F.; Mincione, G.; Supuran, C. T. Bioorg. Med. Chem. 1999, 7, 2397.
7. Alterio, V.; Hilvo, M.; Di Fiore, A.; Supuran, C. T.; Pan, P.; Parkkila, S.; Scaloni, A.;
Pastorek, J.; Pastorekova, S.; Pedone, C.; Scozzafava, A.; Monti, S. M.; De Simone,
G. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 16233.
The rates of spontaneous hydrolysis (without enzyme) were subtracted from
the enzymatic rates. Inhibition with acetazolamide has been used as a control,
being performed as described above, by titration of the enzymes with acetazol-
amide solutions in concentration ranges between 10 nM to 100 lM. IC50 repre-
sents the molarity of inhibitor producing a 50% decrease of the enzyme activity
and were determined from semilogarithmic plots of enzyme activity versus
molarity of inhibitor.11
20. Pullan, L. M.; Noltmann, E. A. Biochemistry 1985, 24, 635. The phosphatase
activity with 1 and 3 as substrates has been assayed by a variant of the method
used by Pullan and Noltmann, measuring the absorbance at 405 nm of the
8. (a) De Simone, G.; Supuran, C. T. Biochim. Biophys. Acta 2010, 1804, 404; (b)
Ozensoy Guler, O.; De Simone, G.; Supuran, C. T. Curr. Med. Chem. 2010; (c)
Dubois, L.; Lieuwes, N. G.; Maresca, A.; Thiry, A.; Supuran, C. T.; Scozzafava, A.;
Wouters, B. G.; Lambin, P. Radiother. Oncol. 2009, 92, 423.
chromogenic group 4-nitrophenol 2 which is released according to the
reactions of Scheme 1. The assay has been performed at 25 °C in the same
buffer used for the esterase activity measurements described above, working at
substrate concentrations of 0.08–5 mM (variants of the assay have been also
9. (a) Ahlskog, J. K. J.; Dumelin, C. E.; Trüssel, S.; Marlind, J.; Neri, D. Bioorg. Med.
Chem. Lett. 2009, 19, 4851; (b) Ahlskog, J. K.; Schliemann, C.; Mårlind, J.;
Qureshi, U.; Ammar, A.; Pedleym, R. B.; Neri, D. Br. J. Cancer 2009, 101, 645.
10. Innocenti, A.; Pastorekova, S.; Pastorek, J.; Scozzafava, A.; De Simone, G.;
Supuran, C. T. Bioorg. Med. Chem. Lett. 2009, 19, 5825.
performed at pH values between 5.5–9 for the various a, b-, c- and f-CAs
investigated here, but no catalytic enhancement has been detected at any pH
tested). Kinetic parameters were determined as described above, and the rates
of spontaneous hydrolysis (without enzyme) were subtracted from the
measured enzymatic rates. Inhibition with acetazolamide has again been
used as a control, being performed as described above, by titration of the
enzymes with acetazolamide solutions in the concentration range between
11. Innocenti, A.; Scozzafava, A.; Parkkila, S.; Puccetti, L.; De Simone, G.; Supuran,
C. T. Bioorg. Med. Chem. Lett. 2008, 18, 2267.
12. Bowler, M. W.; Cliff, M. J.; Waltho, J. P.; Blackburn, G. M. New J. Chem. 2010, 34,
784.
10 nM to 100 lM. IC50 values were calculated as described above. The sulfatase
activity with 4-nitrophenyl sulfate (4-NSA) as substrate, has been investigated
in an analogous manner, and working at various pH values (in the range of
5.4–8.5, data not shown) but was totally absent with all investigated enzymes,
in all experimental conditions employed.
13. (a) Cliff, M. J.; Bowler, M. W.; Varga, A.; Marston, J. P.; Szabó, J.; Hounslow, A.
M.; Baxter, N. J.; Blackburn, G. M.; Vas, M.; Waltho, J. P. J. Am. Chem. Soc. 2010,
132, 6507; (b) Baxter, N. J.; Bowler, M. W.; Alizadeh, T.; Cliff, M. J.; Hounslow, A.
M.; Wu, B.; Berkowitz, D. B.; Williams, N. H.; Blackburn, G. M.; Waltho, J. P.
Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 4555.
14. (a) Musilek, K.; Dolezal, M.; Gunn-Moore, F.; Kuca, K. Med. Res. Rev., in press.;
(b) Zhao, W.; Ge, P. Y.; Xu, J. J.; Chen, H. Y. Environ. Sci. Technol. 2009, 43, 6724.
15. (a) Denz, F. A. J. Pathol. Bacteriol. 1951, 63, 81; (b) Lorke, D. E.; Petroianu, G. A. J.
Appl. Toxicol. 2009, 29, 459.
21. Nishimori, I.; Minakuchi, T.; Morimoto, K.; Sano, S.; Onishi, S.; Takeuchi, H.;
Vullo, D.; Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2006, 49, 2117.
22. Nishimori, I.; Minakuchi, T.; Kohsaki, T.; Onishi, S.; Takeuchi, H.; Vullo, D.;
Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2007, 17, 3585.
23. Joseph, P.; Turtaut, F.; Ouahrani-Bettache, S.; Montero, J.-L.; Nishimori, I.;
Minakuchi, T.; Vullo, D.; Scozzafava, A.; Köhler, S.; Winum, J.-Y.; Supuran, C. T.
J. Med. Chem. 2010, 53, 2277.
16. (a) Dennis, L. K.; Lynch, C. F.; Sandler, D. P.; Alavanja, M. C. Environ. Health
Perspect. 2010, 118, 812; (b) Manthripragada, A. D.; Costello, S.; Cockburn, M.
G.; Bronstein, J. M.; Ritz, B. Epidemiology 2010, 21, 87.
24. Zimmerman, S.; Innocenti, A.; Casini, A.; Ferry, J. G.; Scozzafava, A.; Supuran, C.
T. Bioorg. Med. Chem. Lett. 2004, 14, 6001.
17. (a) Brown, H. W.; Bush, A. F. Arch. Ind. Hyg. Occup. Med. 1950, 1, 633; (b) Wu, J.;
Lan, C.; Chan, G. Y. Chemosphere 2009, 76, 1308; (c) Mirajkar, N.; Pope, C. N.
Biochem. Pharmacol. 2008, 76, 1047; (d) Karanth, S.; Liu, J.; Ray, A.; Pope, C.
Toxicology 2007, 239, 167.
25. Isik, S.; Kockar, F.; Arslan, O.; Ozensoy Guler, O.; Innocenti, A.; Supuran, C. T.
Bioorg. Med. Chem. Lett. 2008, 18, 6327.
26. Innocenti, A.; Zimmerman, S.; Ferry, J. G.; Scozzafava, A.; Supuran, C. T. Bioorg.
Med. Chem. Lett. 2004, 14, 3327.
18. Khalifah, R. G. J. Biol. Chem. 1971, 246, 2561. An applied photophysics stopped-
flow instrument has been used for assaying the CA catalysed CO2 hydration
activity. Phenol red (at a concentration of 0.2 mM) has been used as indicator,
working at the absorbance maximum of 557 nm, with 10–20 mM Hepes (pH
27. Viparelli, F.; Monti, S. M.; De Simone, G.; Innocenti, A.; Scozzafava, A.; Xu, Y.;
Morel, F. M. M.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2010, 20, 4745.
28. Lapointe, M.; MacKenzie, T. D. B.; Morse, D. Plant Physiol. 2008, 147, 1427.
29. Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C. T.; De Simone, G. X-ray
Crystallography of CA Inhibitors and Its Importance In Drug Design. In Drug
Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications;
Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken, 2009; pp 73–138.
30. Schlicker, C.; Hall, R. A.; Vullo, D.; Middelhaufe, S.; Gertz, M.; Supuran, C. T.;
Muhlschlegel, F. A.; Steegborn, C. J. Mol. Biol. 2009, 385, 1207.
7.5, for
a- and c-CAs) or Tris (pH 8.3 for b-CAs) as buffers, and 20 mM Na2SO4
(for -CAs) or 10–20 mM NaCl—for b-CAs (for maintaining constant the ionic
a
strength), following the initial rates of the CA-catalyzed CO2 hydration reaction
for a period of 10–100 s. The CO2 concentrations ranged from 1.7 to 17 mM for
the determination of the kinetic parameters. For each concentration of the