Archaeal chitinase complexed with substrate
H. Tsuji et al.
from the pathogenic fungus Coccidioides immitis.
Protein Sci 9, 544–551.
ing-based discovery of potent inhibitors. Chem Biol 14,
589–599.
22 van Aalten DM, Synstad B, Brurberg MB, Hough E,
Riise BW, Eijsink VG & Wierenga RK (2000) Structure
of a two-domain chitotriosidase from Serratia marces-
34 Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson
M, Adams DJ, Shiomi K, Omura S & van Aalten DM
(2005) Specificity and affinity of natural product cyclo-
pentapeptide inhibitors against A. fumigatus, human,
and bacterial chitinases. Chem Biol 12, 65–76.
˚
cens at 1.9-A resolution. Proc Natl Acad Sci USA 97,
5842–5847.
23 Nakamura T, Mine S, Hagihara Y, Ishikawa K &
Uegaki K (2007) Structure of the catalytic domain of the
hyperthermophilic chitinase from Pyrococcus furiosus.
Acta Crystallogr Sect F: Struct Biol Cryst Commun 63,
7–11.
35 Watanabe T, Ariga Y, Sato U, Toratani T, Hashimoto
M, Nikaidou N, Kezuka Y, Nonaka T & Sugiyama J
(2003) Aromatic residues within the substrate-binding
cleft of Bacillus circulans chitinase A1 are essential for
hydrolysis of crystalline chitin. Biochem J 376, 237–244.
36 Katouno F, Taguchi M, Sakurai K, Uchiyama T,
Nikaidou N, Nonaka T, Sugiyama J & Watanabe T
(2004) Importance of exposed aromatic residues in
chitinase B from Serratia marcescens 2170 for crystal-
line chitin hydrolysis. J Biochem 136, 163–168.
37 Bortone K, Monzingo AF, Ernst S & Robertus JD
(2002) The structure of an allosamidin complex with the
Coccidioides immitis chitinase defines a role for a second
acid residue in substrate-assisted mechanism. J Mol Biol
320, 293–302.
24 van Aalten DM, Komander D, Synstad B, Gaseidnes S,
˚
Peter MG & Eijsink VG (2001) Structural insights into
the catalytic mechanism of a family 18 exo-chitinase.
Proc Natl Acad Sci USA 98, 8979–8984.
25 Oku T & Ishikawa K (2006) Analysis of the hyper-
thermophilic chitinase from Pyrococcus furiosus: activity
toward crystalline chitin. Biosci Biotechnol Biochem 70,
1696–1701.
26 Tanaka T, Fujiwara S, Nishikori S, Fukui T, Takagi M
& Imanaka T (1999) A unique chitinase with dual
active sites and triple substrate binding sites from the
hyperthermophilic archaeon Pyrococcus kodakaraensis
KOD1. Appl Environ Microbiol 65, 5338–5344.
27 Dahiya N, Tewari R & Hoondal GS (2006) Biotechno-
logical aspects of chitinolytic enzymes: a review. Appl
Microbiol Biotechnol 71, 773–782.
38 Kolstad G, Synstad B, Eijsink VG & van Aalten DM
(2002) Structure of the D140N mutant of chitinase B
˚
from Serratia marcescens at 1.45 A resolution. Acta
Crystallogr D: Biol Crystallogr 58, 377–379.
39 Synstad B, Gaseidnes S, Vriend G, Nielsen JE &
˚
Eijsink VGH (2000) On the contribution of conserved
acidic residues to the catalytic activity of chitinase B
from Serratia marcescens. In Advances in Chitin Science,
Vol. 4 (Peter MG, Muzzarelli RAA & Domard A, eds),
pp. 524–529. European Chitin Society.
28 Nakamura T, Mine S, Hagihara Y, Ishikawa K,
Ikegami T & Uegaki K (2008) Tertiary structure and
carbohydrate recognition by the chitin-binding domain
of a hyperthermophilic chitinase from Pyrococcus furio-
sus. J Mol Biol 381, 670–680.
40 Bokma E, Rozeboom HJ, Sibbald M, Dijkstra BW &
Beintema JJ (2002) Expression and characterization of
active site mutants of hevamine, a chitinase from the
rubber tree Hevea brasiliensis. Eur J Biochem 269,
893–901.
29 Mine S, Nakamura T, Hirata K, Ishikawa K,
Hagihara Y & Uegaki K (2006) Crystallization and
X-ray diffraction analysis of a catalytic domain of
hyperthermophilic chitinase from Pyrococcus furiosus.
Acta Crystallogr Sect F: Struct Biol Cryst Commun
62, 791–793.
41 Synstad B, Gaseidnes S, van Aalten DM, Vriend G,
˚
Nielsen JE & Eijsink VG (2004) Mutational and com-
putational analysis of the role of conserved residues in
the active site of a family 18 chitinase. Eur J Biochem
271, 253–262.
30 Papanikolau Y, Prag G, Tavlas G, Vorgias CE, Oppen-
heim AB & Petratos K (2001) High resolution struc-
tural analyses of mutant chitinase A complexes with
substrates provide new insight into the mechanism of
catalysis. Biochemistry 40, 11338–11343.
42 Vaaje-Kolstad G, Houston DR, Rao FV, Peter MG,
Synstad B, van Aalten DM & Eijsink VG (2004)
Structure of the D142N mutant of the family 18
chitinase ChiB from Serratia marcescens and its com-
plex with allosamidin. Biochim Biophys Acta 1696,
103–111.
31 Wallace AC, Laskowski RA & Thornton JM (1995)
LIGPLOT: a program to generate schematic diagrams
of protein–ligand interactions. Protein Eng 8, 127–134.
32 Brunger AT, Adams PD, Clore GM, DeLano WL,
¨
Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J,
Nilges M, Pannu NS et al. (1998) Crystallography &
NMR system: a new software suite for macromolecular
structure determination. Acta Crystallogr D: Biol
Crystallogr 54, 905–921.
43 Tews I, Terwisscha van Scheltinga AC, Perrakis A,
Wilson KS & Dijkstra BW (1997) Substrate-assisted
catalysis unifies two families of chitinolytic enzymes.
J Am Chem Soc 119, 7954–7959.
44 Laemmli UK (1970) Cleavage of structural proteins
during the assembly of the head of bacteriophage T4.
Nature 227, 680–685.
33 Hurtado-Guerrero R & van Aalten DM (2007) Struc-
ture of Saccharomyces cerevisiae chitinase 1 and screen-
2694
FEBS Journal 277 (2010) 2683–2695 ª 2010 The Authors Journal compilation ª 2010 FEBS