series. Ammonium ILs, especially those composed of chaotropic
cations and kosmotropic anions, offer potential advantages in
facilitating enzyme functioning. A few ammonium ILs such as
[NHMe3][MeSO3] (which is a protic IL) and [choline][Ac] (which
possesses a hydroxylated cation) are effective in promoting
enzyme activity and stability, and the plausible reason may be
related to both the H-bonding capability and chaotropicity of
these IL cations (in combination with a kosmotropic anion).
The IL cations may play a predominant role over their counter-
anions in affecting the enzyme behavior. By testing 79 ILs of
different types in their acetylcholinesterase (AchE) inhibition
screening assay, Arning et al.48 have already observed a more
profound effect elicited by the IL cations, in terms of their head
groups and side chains, whereas the vast majority of the anion
species exhibited no impact on AchE.
However, it has to be stated that the specific ion effect is
not the only factor controlling enzyme performance in the IL
systems, and that the behavior of an enzyme in IL-containing
aqueous solution may be somewhat different from that in an IL-
dominating system. As has been demonstrated,49 the catalytic
activity is highly dependent on the characteristics of the IL,
the structure of the substrate, and the nature of the enzyme
and the support. Further research has to be carried out in
order to advance our knowledge about biocatalysis in ILs,
thus promoting the development of green biotransformation
processes in such promising nonaqueous media.
14 A. Romero, A. Santos, J. Tojo and A. Rodr´ıguez, J. Hazard. Mater.,
2008, 151, 268–273.
15 R. M. Lau, M. J. Sorgedrager, G. Carrea, F. van Rantwijk, F. Secundo
and R. A. Sheldon, Green Chem., 2004, 6, 483–487.
16 K. Fujita, D. R. MacFarlane, M. Forsyth, M. Yoshizawa-Fujita, K.
Murata, N. Nakamura and H. Ohno, Biomacromolecules, 2007, 8,
2080–2086.
17 F. Falcioni, H. R. Housden, Z. Ling, S. Shimizu, A. J. Walker and N.
C. Bruce, Chem. Commun., 2010, 46, 749–751.
18 T. L. Greaves and C. J. Drummond, Chem. Rev., 2008, 108, 206–237.
19 Z. Yang, K.-P. Zhang, Y. Huang and Z. Wang, J. Mol. Catal. B:
Enzym., 2010, 63, 23–30.
20 Z. Yang and D. A. Robb, Enzyme Microb. Technol., 1993, 15, 1030–
1036.
21 Z. Yang, Y.-J. Yue and M. Xing, Biotechnol. Lett., 2007, 30, 153–158.
22 H. Zhao, J. Chem. Technol. Biotechnol., 2006, 81, 877–891.
23 H. D. W. Jenkins and Y. Marcus, Chem. Rev., 1995, 95, 2695–2724.
24 P. H. von Hippel and K. Y. Wong, Science, 1964, 145, 577–580.
25 D. Constantinescu, H. Weinga¨rtner and C. Herrmann, Angew.
Chem., Int. Ed., 2007, 46, 8887–8889.
26 Y. Marcus, J. Solution Chem., 1994, 23, 831–848.
27 C. Lange, C. Patil and R. Rudolph, Protein Sci., 2005, 14, 2693–2701.
28 J. P. Mann, A. McCluskey and R. Atkin, Green Chem., 2009, 11,
785–792.
29 Z. Yang, X.-J. Liu, C. Chen and P. J. Halling, Biochim. Biophys. Acta,
Proteins Proteomics, 2010, 1804, 821–828.
30 P. Reis, K. Holmberg, H. Watzke, M. E. Leser and R. Miller, Adv.
Colloid Interface Sci., 2009, 147–148, 237–250.
31 P. Grochulski, Y. Li, J. D. Schrag, F. Bouthillier, P. Smith, D.
Harrison, B. Rubin and M. Cygler, J. Biol. Chem., 1993, 268, 12843–
12847.
32 P Grochulski, Y Li, J. D. Schrag and M. Cygler, Protein Sci., 2008,
3, 82–91.
33 L. Lin, B. F. Xie, G. Z. Yang, Q. Q. Shi, Q. Y. Lin, L. H. Xie, X. F.
Wu and S. G. Wu, Chin. J. Biochem. Mol. Biol., 2002, 18, 32–37.
34 C. Bian, Y. Yuan, L. Lin, J. Lin, X. Shi, X. Ye, Z. Huang and M.
Huang, Biochim. Biophys. Acta, Proteins Proteomics, 2005, 1752,
99–102.
Acknowledgements
We thank Prof. H. Zhao of Savannah State University, USA,
and Prof. J.-Z. Liu of Zhongshan University, China, for helpful
discussion in the Hofmeister effect and structural analysis,
respectively.
35 S. Sanfilippo, N. D’Antona and G. Nicolosi, Biotechnol. Lett., 2004,
26, 1815–1819.
36 W.-Y. Lou, M.-H. Zong, Y.-Y. Liu and J.-F. Wang, J. Biotechnol.,
2006, 125, 64–74.
37 W.-Y. Lou, M.-H. Zong, T. J. Smith, H. Wu and J.-F. Wang, Green
Chem., 2006, 8, 509–512.
38 K. D. Collins, Methods, 2004, 34, 300–311.
39 M. Kla¨hn, G. S. Lim, A. Seduraman and P. Wu, Phys. Chem. Chem.
Phys., 2011, 13, 1649–1662.
40 T. Arakawa and S. N. Timasheff, Biochemistry, 1982, 21, 6545–6552.
References
1 F. van Rantwijk and R. A. Sheldon, Chem. Rev., 2007, 107, 2757–
2785.
2 C. Roosen, P. Mu¨ller and L. Greiner, Appl. Microbiol. Biotechnol.,
2008, 81, 607–614.
3 M. Moniruzzaman, N. Kamiya and M. Goto, Org. Biomol. Chem.,
2010, 8, 2887–2899.
4 H. Zhao, J. Chem. Technol. Biotechnol., 2010, 85, 891–907.
5 H. Zhao, J. Mol. Catal. B: Enzym., 2005, 37, 16–25.
6 Z. Yang, J. Biotechnol., 2009, 144, 12–22.
7 Z. Yang, in Ionic Liquids in Biotransformations & Organocatalysis:
Solvents and Beyond, ed. P. D. de Mar´ıa, John Wiley, New York,
2011, ch. 2 (in press).
41 A. Salis, D. Bilanicova, B. W. Ninham and M. Monduzzi, J. Phys.
ˇ
´
Chem. B, 2007, 111, 1149–1156.
42 M. Bostrom, D. R. M. Williams and B. W. Ninham, Biophys. J., 2003,
¨
85, 686–694.
43 A. Sanchez-Ferrer, J. N. Rodrıguez-Lopez, F. Garcıa-Canovas and
´
´
´
´
´
F. Garcıa-Carmona, Biochim. Biophys. Acta, Protein Struct. Mol.
´
Enzymol., 1995, 1247, 1–11.
44 J. C. Espın, R. Varon, L. G. Fenoll, M. A. Gilabert, P. A. Garcıa-
´
´
´
Ruız, J. Tudela and F. Garcıa-Canovas, Eur. J. Biochem., 2000, 267,
´
´
´
1270–1279.
8 F. Hofmeister, Arch. Exp. Pathol. Pharmakol., 1888, 24, 247–
45 F. X. Schmid, in Protein Structure: A Practical Approach, ed. T. E.
Creighton, Oxford University Press, Oxford, 2nd edn, 1997, ch. 11,
pp. 261–297.
260.
9 J. M. Broering and A. S. Bommarius, J. Phys. Chem. B, 2005, 109,
20612–20619.
46 E. V. Kudryashova, A. K. Gladilin, A. V. Vakurov, F. Heizt, A. V.
Levashov and V. V. Mozhaev, Biotechnol. Bioeng., 1997, 55, 267–277.
47 T. de Diego, P. Lozano, S. Gmouh, M. Vaultier and J. L. Iborra,
Biotechnol. Bioeng., 2004, 88, 916–924.
10 J. P. Lindsay, D. S. Clark and J. S. Dordick, Biotechnol. Bioeng., 2004,
85, 553–560.
11 W.-Y. Lou and M.-H. Zong, Chirality, 2006, 18, 814–821.
12 Z. Yang, Y.-J. Yue, W.-C. Huang, X.-M. Zhuang, Z.-T. Chen and M.
Xing, J. Biochem., 2009, 145, 355–364.
48 J. Arning, S. Stolte, A. Boschen, F. Stock, W.-R. Pitner, U. Welz-
Biermann, B. Jastorffa and J. Ranke, Green Chem., 2008, 10, 47–58.
49 T. de Diego, P. Lozano, M. A. Abad, K. Steffensky, M. Vaultier and
J. L. Iborra, J. Biotechnol., 2009, 140, 234–241.
¨
13 J. Dupont and J. Spencer, Angew. Chem., Int. Ed., 2004, 43, 5296–
5297.
1868 | Green Chem., 2011, 13, 1860–1868
This journal is
The Royal Society of Chemistry 2011
©