Journal of the American Chemical Society
Communication
Chem. 1992, 429, 269. (d) Zhang, J.; Leitus, G.; Ben-David, Y.;
Milstein, D. J. Am. Chem. Soc. 2005, 127, 10840. (e) Zhao, J.; Hartwig,
J. F. Organometallics 2005, 24, 2441.
ACKNOWLEDGMENTS
■
This work was supported by KAKENHI (No. 23550121).
(10) For recent reviews on organic reactions in aqueous media, see:
(a) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751. (b) Kobayashi, S.;
̈
REFERENCES
■
Manabe, K. Acc. Chem. Res. 2002, 35, 209. (c) Manabe, K.; Kobayashi,
S. Chem.Eur. J. 2002, 8, 4094. (d) Li, C.-J. Chem. Rev. 2005, 105,
3095. (e) Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725.
(11) (a) Kawahara, R.; Fujita, K.; Yamaguchi, R. J. Am. Chem. Soc.
2010, 132, 15108. (b) Kawahara, R.; Fujita, K.; Yamaguchi, R. Adv.
Synth. Catal. 2011, 353, 1161.
(12) (a) Ogo, S.; Makihara, N.; Kaneko, Y.; Watanabe, Y.
Organometallics 2001, 20, 4903. (b) Himeda, Y.; Onozawa-
Komatsuzaki, N.; Miyazawa, S.; Sugihara, H.; Hirose, T.; Kasuga, K.
Chem.Eur. J. 2008, 14, 11076. (c) Himeda, Y. Green Chem. 2009, 11,
2018.
(1) (a) Marko,
́
I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch,
C. J. Science 1996, 274, 2044. (b) Nishimura, T.; Onoue, T.; Ohe, K.;
Uemura, S. J. Org. Chem. 1999, 64, 6750. (c) Sheldon, R. A.; Arends,
I. W. C. E.; Ten Brink, G.-J.; Dijksman, A. Acc. Chem. Res. 2002, 35,
́
774. (d) Csjernyik, G.; Ell, A. H.; Fadini, L.; Pugin, B.; Backvall, J.-E. J.
Org. Chem. 2002, 67, 1657. (e) Sigman, M. S.; Jensen, D. R. Acc. Chem.
Res. 2006, 39, 221.
(2) (a) Barak, G.; Dakka, J.; Sasson, Y. J. Org. Chem. 1988, 53, 3553.
(b) Sato, K.; Aoki, M.; Takagi, J.; Noyori, R. J. Am. Chem. Soc. 1997,
119, 12386. (c) Noyori, R.; Aoki, M.; Sato, K. Chem. Commun. 2003,
1977.
̈
(13) Generated hydrogen gas could be used for the hydrogena-
tion of an alkene (1-decene). Details are shown in Scheme S1 in the
Supporting Information.
(3) (a) Almeida, M. L. S.; Beller, M.; Wang, G.-Z.; Backvall, J.-E.
̈
Chem.Eur. J. 1996, 2, 1533. (b) Backvall, J.-E. J. Organomet. Chem.
̈
2002, 652, 105. (c) Fujita, K.; Furukawa, S.; Yamaguchi, R.
J. Organomet. Chem. 2002, 649, 289. (d) Gauthier, S.; Scopelliti, R.;
Severin, K. Organometallics 2004, 23, 3769. (e) Hanasaka, F.; Fujita,
K.; Yamaguchi, R. Organometallics 2005, 24, 3422. (f) Levy, R.;
Azerraf, C.; Gelman, D.; Rueck-Braun, K.; Kapoor, P. N. Catal.
Commun. 2009, 11, 298. (g) Coleman, M. G.; Brown, A. N.; Bolton,
B. A.; Guan, H. Adv. Synth. Catal. 2010, 352, 967. (h) Moyer, S. A.;
Funk, T. W. Tetrahedron Lett. 2010, 51, 5430.
(14) We have also carried out the dehydrogenative oxidation
reactions in 0.5 mmol scale with the isolation of the carbonyl products.
Results are shown in Table S1 in the Supporting Information.
(15) At present, aliphatic primary alcohols were not efficiently
oxidized by the present system: the reaction of 1-octanol in the
presence of catalyst 2b (3.0 mol %) in water under reflux for 20 h gave
octanal in 16% yield (conversion of 1-octanol was 17%).
1
(16) H NMR analysis of the aqueous phase revealed that 2b was
(4) (a) Friedrich, A.; Schneider, S. ChemCatChem 2009, 1, 72.
(b) Johnson, T. C.; Morris, D. J.; Wills, M. Chem. Soc. Rev. 2010, 39,
81. (c) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
(5) (a) Dobson, A.; Robinson, S. D. J. Organomet. Chem. 1975, 87,
C52. (b) Ligthart, G. B. W. L.; Meijer, R. H.; Donners, M. P. J;
Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A. Tetrahedron Lett.
2003, 44, 1507. (c) Zhang, J.; Gandelman, M.; Shimon, L. J. W.;
Rozenberg, H.; Milstein, D. Organometallics 2004, 23, 4026. (d) Adair,
G. R. A.; Williams, J. M. J. Tetrahedron Lett. 2005, 46, 8233. (e) Van
Buijtenen, J.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A.;
Kooijman, H.; Spek, A. L. Organometallics 2006, 25, 873. (f) Baratta,
W.; Bossi, G.; Putignano, E.; Rigo, P. Chem.Eur. J. 2011, 17, 3474.
(g) Prades, A.; Peris, E.; Albrecht, M. Organometallics 2011, 30, 1162.
(h) Zhang, J.; Balaraman, E.; Leitus, G.; Milstein, D. Organometallics
2011, 30, 5716.
quantitatively recovered without decomposition.
(17) We have also carried out the reuse of 2b in the reactions of a
variety of substrates. Results are shown in eq. S1 and Table S2 in the
Supporting Information.
(18) In order to support the mechanism proposed, preparation of a
monocationic Cp*Ir complex related to A was accomplished.
Treatment of 2b with NaOtBu (1.0 equiv.) in water gave a
monocationic complex 11 in 82% yield. Compositional formula of
11 was determined to be C21H24O6F3N2SIr by element analysis, which
is consistent with the structure illustrated below. The complex 11
exhibited a high catalytic activity: When the reaction of 7a was carried
out in the presence of 11 (1.5 mol %) in water under reflux for 20 h,
8a was obtained in 93% yield.
(6) (a) Lin, Y.; Ma, D.; Lu, X. Tetrahedron Lett. 1987, 28, 3115.
(b) Fujita, K.; Tanino, N.; Yamaguchi, R. Org. Lett. 2007, 9, 109.
(c) Royer, A. M.; Rauchfuss, T. B.; Wilson, S. R. Inorg. Chem. 2008, 47,
395. (d) Royer, A. M.; Rauchfuss, T. B.; Gray, D. L. Organometallics
2010, 29, 6763. (e) Musa, S.; Shaposhnikov, I.; Cohen, S.; Gelman, D.
Angew. Chem., Int. Ed. 2011, 50, 3533. (f) Fujita, K.; Yoshida, T.;
Imori, Y.; Yamaguchi, R. Org. Lett. 2011, 13, 2278.
(7) For recent reviews on the catalytic chemistry of iridium in
oxidative transformation of organic substrates. (a) Fujita, K.;
Yamaguchi, R. Synlett 2005, 560. (b) Fujita, K.; Yamaguchi, R. In
Iridium Complexes in Organic Synthesis; Oro, L. A., Claver, C., Eds.;
Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2009;
Chapter 5, pp 107−143. (c) Suzuki, T. Chem. Rev. 2011, 111, 1825.
(8) Transition metal catalyzed hydrogen production from alcohols
has been also reported. (a) Dobson, A.; Robinson, S. D. Inorg. Chem.
1977, 16, 137. (b) Jung, C. W.; Garrou, P. E. Organometallics 1982, 1,
658. (c) Morton, D.; Cole-Hamilton, D. J. J. Chem. Soc., Chem.
Commun. 1987, 248. (d) Morton, D.; Cole-Hamilton, D. J. J. Chem.
Soc., Chem. Commun. 1988, 1154. (e) Morton, D.; Cole-Hamilton,
D. J.; Utuk, I. D.; Paneque-Sosa, M.; Lopez-Poveda, M. J. Chem. Soc.,
Dalton Trans. 1989, 489. (f) Junge, H.; Beller, M. Tetrahedron Lett.
2005, 46, 1031. (g) Junge, H.; Loges, B.; Beller, M. Chem. Commun.
2007, 522. (h) Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.;
Gladiali, S.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 9593.
(9) Closely related dehydrogenation of alcohols leading to esters has
been reported. (a) Blum, Y.; Shvo, Y. J. Organomet. Chem. 1985, 282,
C7. (b) Murahashi, S.-I.; Naota, T.; Ito, K.; Maeda, Y.; Taki, H. J. Org.
Chem. 1987, 52, 4319. (c) Lin, Y.; Zhu, X.; Zhou, Y. J. Organomet.
3646
dx.doi.org/10.1021/ja210857z | J. Am. Chem. Soc. 2012, 134, 3643−3646