Ruthenium-Catalyzed Oxidation of Alkanes
J . Org. Chem., Vol. 65, No. 26, 2000 9187
be readily oxidized at room temperature by the two
catalytic systems (i) RuCl2(PPh3)3-t-BuOOH13 and (ii)
Ru/C(Ru on charcoal)-CH3CO3H14 to give the corre-
sponding ketones and alcohols highly efficiently (eq 1).
type oxidations of amines,17 amides,18 nitriles,19 alkenes,20
alcohols,21 and phenols.22
Resu lts a n d Discu ssion
Ru th en iu m -Ca ta lyzed Oxid a tion of Alk a n es. To
generate oxo-metal complexes, which may correspond
to the oxo-iron(IV) species of cytochrome P-450, we
wanted to generate middle-valent RudO species,16 which
may exhibit unique reactivity and be quite different from
high-valent RuO4 species, by the oxidation of low-valent
ruthenium complexes.5 Then, we discovered that low-
valent ruthenium species such as RuCl2(PPh3)313 and Ru/
C14 with peroxides are excellent catalytic systems for the
oxidations of alkanes.
At first, the efficiency of these catalytic systems was
examined for the oxidation of cyclohexane. To a stirred
mixture of cyclohexane and ruthenium catalyst in ben-
zene or ethyl acetate was added either a t-BuOOH
solution in benzene or a CH3CO3H solution in ethyl
acetate dropwise over a period of 30 min. Because the
reaction is very rapid, it is completed immediately after
the addition of the peroxide. The conversions of cyclo-
hexane and the yields of cyclohexanone and cyclohexanol
were determined by GC analysis using an internal
standard after the addition of the peroxide. The RuCl2-
(PPh3)3-catalyzed oxidation of cyclohexane with 1 equiv
of t-BuOOH proceeds to give cyclohexanone and cyclo-
hexanol (68:32) with 9.3% conversion and 82% selectivity.
On the other hand, peracetic acid is more reactive. The
Ru/C-catalyzed oxidation of cyclohexane with 0.7 equiv
of CH3CO3H proceeds with 9.1% conversion and 93%
selectivity, where the ratio of cyclohexanone and cyclo-
hexanol is 94:6. In view of the reactivity and selectivity,
the Ru/C-CH3CO3H system is more suitable for the
oxidation of alkanes.
The former catalytic system using RuCl2(PPh3)3 and
t-BuOOH is particularly effective for the oxidation of
alkylated arenes to the corresponding aryl ketones, while
the latter Ru/C-catalyzed oxidation with peracetic acid
is useful for the conversion of alkanes to the correspond-
ing ketones. Catalytic oxidations using t-BuOOH and
CH3CO3H are convenient because (i) t-BuOOH and
CH3CO3H are readily obtained from aerobic oxidation of
isobutane and acetaldehyde, respectively, and (ii) tert-
butyl alcohol formed can be used for tert-butyl methyl
ether as high octane fuel, and the acetic acid formed can
be also used.
To raise the reactivity, a ruthenium-catalyzed oxida-
tion was carried out in the presence of trifluoroacetic acid.
Thus, the oxidation of cyclohexane with CH3CO3H in the
presence of RuCl3‚nH2O catalyst in trifluoroacetic acid-
CH2Cl2 gave cyclohexyl trifluoroacetate and cyclohex-
anone with 90% conversion and 90% selectivity.
Full details of these novel oxidations of alkanes are
described with respect to scope and reaction mecha-
nism.15 These results are consistent with our previous
results16 for the ruthenium-catalyzed cytochrome P-450
(12) [Cu(bpy)2](ClO4): (a) Sobkowiak, A.; Qui, A.; Liu, X.; Llobet,
A.; Sawyer, D. T. J . Am. Chem. Soc. 1993, 115, 609-614. Fe2O(OAc)2-
Cl2(bpy)2: (b) Vincent, J . B.; Huffman, J . C.; Christou, G.; Li, Q.;
Nanny, M. A.; Hendrickson, D. N.; Fong, R. H.; Fish, R. H. J . Am.
Chem. Soc. 1988, 110, 6898-6900. [Fe2O(phen)4(H2O)2](ClO4)4: (c)
Fontecave, M.; Roy, B.; Lambeaux, C. J . Chem. Soc., Chem. Commun.
1991, 939-940. Fe(PA)2: (d) Tung, H.-C.; Kang, C.; Sawyer, D. T. J .
Am. Chem. Soc. 1992, 114, 3445-3455. [Fe2(TPA)2O(OAc)](ClO4)3: (e)
Leising, R. A.; Kim, J .; Pe´rez, M. A.; Que, L., J r. J . Am. Chem. Soc.
1993, 115, 9524-9530. Fe(NO3)3-PA: (f) Barton, D. H. R.; Chavasiri,
W. Tetrahedron 1994, 50, 19-30. Fe2(Mebpy)4O(OAc): (g) Vincent, J .
M.; Me´nage, S.; Lambeaux, C.; Fontecave, M. Tetrahedron Lett. 1994,
35, 6287-6290. Mn4O2(O2CPh)7(bpy)2: (h) Fish, R. H.; Fong, R. H.;
Vincent, J . B.; Christou, G. J . Chem. Soc., Chem. Commun. 1988,
1504-1506. [Mn2O2(bpy)4](ClO4)3: (i) Me´nage, S.; Collomb-Dunand-
Sauthier, M.-N.; Lambeaux, C.; Fontecave, M. J . Chem. Soc., Chem.
Commun. 1994, 1885-1886. [MnL(OAc)]n: (j) Ganeshpure, P. A.;
Tembe, G. L.; Satish, S. Tetrahedron Lett. 1995, 36, 8861-8864. Mn-
(C8F17(CH2)2CO2)2(C8F17(CH2)3)3TACN: (k) Vincent, J .-M.; Rabion, A.;
Yachandra, V. K.; Fish, R. H. Angew. Chem., Int. Ed. Engl. 1997, 36,
2346-2349. [Mn3O4(dipy)4(OH2)2](ClO4)4: (l) Sarneski, J . E.; Michos,
D.; Thorp, H. H.; Didiuk, M.; Poon, T.; Blewitt, J .; Brudvig, G. W.;
The rate of the addition of peracetic acid to the mixture
of alkane and Ru/C catalyst in ethyl acetate must be
controlled, because the reaction of ruthenium with per-
acetic acid is very fast and exothermic. The addition of
peracetic acid solution dropwise over a period of 30 min
(15) (a) Murahashi, S.-I.; Oda, Y.; Naota, T. J . Am. Chem. Soc. 1992,
114, 7913-7914. (b) Murahashi, S.-I.; Naota, T.; Komiya, N. Tetrahe-
dron Lett. 1995, 36, 8059-8062.
(16) (a) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34,
2443-2465. (b) Murahashi, S.-I. Pure. Appl. Chem. 1992, 64, 403-
412. (c) Murahashi, S.-I.; Komiya, N. Catal. Today 1998, 41, 339-
349. (d) Murahashi, S.-I.; Naota, T. Comprehensive Organic Chemistry
II, Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford,
U.K., 1995; Vol. 12, pp 1177-1192. (e) Murahashi, S.-I.; Komiya, N.
Biomimetic Oxidations Catalyzed by Transition Metal Complexes;
Meunier, B., Ed.; Imperial College Press: London, 2000; pp 563-611.
(17) (a) Murahashi, S.-I.; Naota, T.; Taki, H. J . Chem. Soc., Chem.
Commun. 1985, 613-614. (b) Murahashi, S.-I.; Naota, T.; Yonemura,
K. J . Am. Chem. Soc. 1988, 110, 8256-8258. (c) Murahashi, S.-I.;
Naota, T.; Miyaguchi, N.; Nakato, T. Tetrahedron Lett. 1992, 33, 6991-
6994.
Crabtree, R. H. Tetrahedron Lett. 1991, 32, 1153-1156. Mn2+
-
exchanged clay: (m) Tateiwa, J .; Horiuchi, H.; Uemura, S. J . Chem.
Soc., Chem. Commun. 1994, 2567-2568. V-MCM-41 zeolite: (n)
Neumann, R.; Khenkin, A. M. Chem. Commun. 1996, 2643-2644.
Metal-substituted polyoxometalate: (o) Faraj, M.; Hill, C. L. J . Chem.
Soc., Chem. Commun. 1987, 1487-1489. cis-[Ru(6,6-Cl2bpy)2(OH2)2](CF3-
SO3)2: (p) Lau, T.-C.; Che, C.-M.; Lee, W.-O.; Poon, C.-K. J . Chem.
Soc., Chem. Commun. 1988, 1406-1407. [Ru(Me3tacn)O2(CF3CO2)]-
(ClO4): (q) Cheng, W.-C.; Yu, W.-Y.; Cheung, K.-K.; Che, C.-M. J .
Chem. Soc., Chem. Commun. 1994, 1063-1064. RuCl3‚nH2O: (r)
Launay, F.; Roucoux, A.; Patin, H. Tetrahedron Lett. 1998, 39, 1353-
1356.
(18) (a) Murahashi, S.-I.; Naota, T.; Kuwabara, T.; Saito, T.;
Kumobayashi, H.; Akutagawa, S. J . Am. Chem. Soc. 1990, 112, 7820-
7822. (b) Murahashi, S.-I.; Saito, T.; Naota, T.; Kumobayashi, H.;
Akutagawa, S. Tetrahedron Lett. 1991, 32, 5991-5994.
(19) Murahashi, S.-I.; Naota, T.; Kuwabara, T. Synlett 1989, 62-
63.
(20) Murahashi, S.-I.; Saito, T.; Hanaoka, H.; Murakami, Y.; Naota,
T.; Kumobayashi, H.; Akutagawa, S. J . Org. Chem. 1993, 58, 2929-
2930.
(21) (a) Murahashi, S.-I.; Naota, T.; Nakajima, N. Tetrahedron Lett.
1985, 26, 925-928. (b) Murahashi, S.-I.; Naota, T. Synthesis 1993,
433-440. (c) Murahashi, S.-I.; Naota, T.; Oda, Y.; Hirai, N. Synlett
1995, 733-734. (d) Murahashi, S.-I.; Naota, T.; Hirai, N. J . Org. Chem.
1993, 58, 7318-7319.
(22) Murahashi, S.-I.; Naota, T.; Miyaguchi, N.; Noda, S. J . Am.
Chem. Soc. 1996, 118, 2509-2510.
(13) For preliminary communications (RuCl2(PPh3)3-t-BuOOH),
see: (a) Murahashi, S.-I.; Naota, T.; Kuwabara, T. 56th Annu. Meet.
J pn. Chem. Soc. (Tokyo), 1988, Abstr. II, 2A 19. (b) Murahashi, S.-I.;
Oda, Y.; Naota, T.; Kuwabara, T. Tetrahedron Lett. 1993, 34, 1299-
1302.
(14) For preliminary communications (Ru/C-CH3CO3H), see: Mu-
rahashi, S.-I.; Oda, Y.; Komiya, N.; Naota, T. Tetrahedron Lett. 1994,
35, 7953-7956.