TABLE 1. Dep r otection of 2-P h en yl-1,3-d ioxola n e by
Usin g Ce(OTf)3 in Va r iou s Exp er im en ta l Con d ition s
Sim p le a n d Efficien t Ch em oselective Mild
Dep r otection of Aceta ls a n d Keta ls Usin g
Cer iu m (III) Tr ifla te
†
†
†
Renato Dalpozzo, Antonio De Nino, Loredana Maiuolo,
,
†
†
Antonio Procopio,* Antonio Tagarelli,
Giovanni Sindona, and Giuseppe Bartoli
entry
Ce(OTf)3 (mol %)
solvent
THFa
CHCl3 a
t (h)
yield (%)
†
‡
1
2
3
4
5
6
30
30
30
30
30
15
15
15
6
6
6
60
25
80
98
17
73
Dipartimento di Chimica, Universit a` della Calabria,
a
CH3CN
I-87030 Arcavacata di Rende (CS), Italy, and Dipartimento
di Chimica Organica “A. Mangini”, viale Risorgimento 4,
I-40136 Bologna, Italy
CH3NO2 a
b
CH3NO2
CH3NO2 a
6
a
Saturated with water. b Dry solvent.
Received J une 11, 2002
reported needs to reflux the reaction mixture for several
hours to deprotect the most resistant acetals and ketals
as 1,3-dioxolanes.
Herein, we reported a new mild efficient method for
the selective deprotection of acetal and ketal groups in
the presence of other protective groups by using
cerium(III) trifluoromethane sulfonate hydrate as a
Lewis acid catalyst.
Abstr a ct: A new and chemoselective method for the cleav-
age of alkyl and cyclic acetals and ketals at room temper-
ature in wet nitromethane by using catalytic cerium(III)
trifluoromethane sulfonate is presented. The high yields, the
observed selectivity, the very gentle reaction conditions, and
the almost neutral pH make this procedure particularly
attractive for multistep synthesis.
The deprotection of cyclic acetals and ketals as 1,3-
dioxolane was already described by using cerium(III)
Chemoselective transformation of polyfunctional mol-
ecules is a challenging problem in organic syntheses. The
selective protection/deprotection of carbonyl groups oc-
cupies a fundamental role in the multistep synthesis.
There are tens of protective groups that can be introduced
8
chloride heptahydrate in acetonitrile, a system previ-
9
ously used for cleavage of different protective groups.
The method does not use CeCl
3
2
‚7H O as catalyst, but as
1
reagent in 1.5 molar equiv, and it does not work properly
for acetals and ketals different from 1,3-dioxolane. Metal
parts of metal triflates are more cationic than those of
metal chlorides,10 and thus, we expected that cerium(III)
triflate was more Lewis acidic than cerium(III) chloride.
We tested cerium(III) triflate as Lewis acid for depro-
tection of acetals and ketals because the reagent is known
and removed by a variety of methods, but considerable
efforts are still directed toward developing efficient,
selective, and mild systems for both the introduction and
2
cleavage of many existing protective groups. Acetals and
ketals are frequently used to protect carbonyl compounds
and hence several reagents have been developed for their
deprotection in very smoothly conditions: CAN in neutral
3
4
h h
to fulfill the requirements of pK values (K ) hydrolysis
or mildly conditions, thiourea in EtOH/H
2
O, SmCl
3
/
TMSCl.5
constant) of 4.3-10.08 and WERK (water exchange rate
6
-1 -1
constant) greater than 3.2 × 10 M
s
for obtaining
In recent years, metal triflate mediated Lewis acid
catalysis has attracted enormous interest throughout the
sufficient activity as Lewis acid catalyst according to
6
Kobayashi et al. [Ce(OTf)
3
: pK
h
) 8.3; WERK ) 2.7 ×
scientific community. Bismuth triflate, for example, was
8
10
1
0 ].
reported to be a highly efficient Lewis catalyst for
deprotection of acetals and ketals in aqueous tetrahy-
Ce(OTf)
3
is not easily commercially available, but it
drofuran.7 A suspension of Bi(OTf)
acidic, and the aqueous layer from the workup was also
can be prepared in the laboratory in a straightforward
manner.11 Cerium(III) trifluoromethane sulfonate is a
noncorrosive white solid, and it can be stored under dry
3
‚xH
2
O in water is
found to be acidic (pH ) 2). Moreover, the method
*
To whom correspondence should be addressed. Tel: +39 984
(8) Marcantoni, E.; Nobili, F.; Bartoli, G.; Bosco, M.; Sambri, L. J .
Org. Chem. 1997, 62, 4183.
4
92077. Fax: +39 984 492055.
†
Universit a` della Calabria.
Dipartimento di Chimica Organica “A. Mangini”.
(9) Bartoli, G.; Cupone, G.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.;
Marcantoni, E.; Procopio, A. Synlett 2001, 12, 1897. (b) Sabitha, G.;
Babu, R. S.; Rajkumar, M.; Srividya, R.; Yadav, J . S. Org. Lett. 2002,
3, 1149. (c) Cappa, A.; Marcantoni, E.; Torregiani, E.; Bartoli, G.;
Bellucci, M. C.; Bosco, M.; Sambri, L. J . Org. Chem. 1999, 64, 5696.
(10) Kobayashi, S.; Nagayama, S.; Busujima, T. J . Am. Chem. Soc.
1998, 120, 8287.
(11) Smith, P. H.; Reyes, Z. E.; Lee, C. W.; Raymond, K. N. Inorg.
Chem. 1988, 27, 4154.
(12) Chaundary, S. K.; Hernandez, O. Tetrahedron Lett. 1979, 95,
99.
‡
(
1) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic
Synthesis, 3rd ed.; J ohn Wiley and Sons: New York, 1999. (b)
Kocienski, P. J . Protecting Groups, 1st ed; George Thieme Verlag:
Stuttgart, 1994.
(
2) Kocienski, P. J . J . Chem. Soc., Perkin Trans. 1 2001, 2109-2135.
(3) Mark o´ , I. E.; Ates, A.; Gautier, A.; Leroy, B.; Plancher, J . M.;
Quesnel, Y.; VAnherck, J . C. Angew. Chem., Int. Ed. 1999, 38, 3207.
b) Ates, A.; Gautier, A.; Leroy, B.; Plancher, J . M.; Quesnel, Y.; Mark o´ ,
I. E. Tetrahedron Lett. 1999, 40, 1799.
(
(
(
(
4) Battacharjya, A.; Majumdar, S. J . Org. Chem. 1999, 64, 5682.
5) Yutaka, U.; Koumoto, N.; Fujisawa, T. Chem. Lett. 1989, 1623.
6) Steel, P. G. J . Chem. Soc., Perkin Trans. 1 2001, 2727. (b)
(13) Kanai, K.; Sakamoto, I.; Ogawa, S.; Suami, T. Bull. Chem. Soc.
J pn. 1987, 60, 1529.
(14) Adams, E.; Hiegermann, M.; Duddeck, H.; Welzel, P. Tetrahe-
dron 1990, 46, 5975.
(15) H o¨ fle, G.; Steglich, W.; Vorbr u¨ ggen, H. Angew. Chem., Int. Ed.
Engl. 1978, 17, 569.
Kobayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35, 209.
7) Carrigan, M. D.; Sarapa, D.; Smith, R. C.; Wieland, L. C.; Mohan,
R. S. J . Org. Chem. 2002, 67, 1027.
(
1
0.1021/jo0260387 CCC: $22.00 © 2002 American Chemical Society
Published on Web 11/15/2002
J . Org. Chem. 2002, 67, 9093-9095
9093