COMMUNICATIONS
1991, p. 269; d) J. March, Advanced Organic Chemistry, Wiley, New
York, 1992, p. 762.
[13] J. H. Teles, M. Schulz BASF AG, WO-A1 9721648 1997 [Chem. Abstr.
1997, 127, 121499].
[2] a) A. Schrohe, Chem. Ber. 1875, 8, 367; b) A. Baeyer, Ber. 1882, 15,
2705; c) W. H. Perkin, Jr., J. Chem. Soc. 1884, 45, 170.
[3] a) T. Tsuchimoto, T. Joya, E. Shirakawa, Y. Kawakami, Synlett 2000,
12, 1777; b) Y. Izumi, Catal. Today 1997, 33, 371; c) I. V. Kozhevnikov,
Chem. Rev. 1998, 98, 171.
[4] a) W. Drenth, H. Hogeveen, Recl. Trav. Chim. Pays-Bas 1960, 79,
1002; b) A. D. Allen, Y. Chiang, A. J. Kresge, T. T. Tidwell, J. Org.
Chem. 1982, 47, 775, and references therein.
[5] a) V. J‰ger, H. G. Viehe in Methoden Org. Chem. (Houben-Weyl) 4th
ed. 1952 ,Vol. 5/2a 1977, p. 726; b) M. Kutscheroff, Chem. Ber. 1884,
17, 13; c) R. J. Thomas, K. N. Campbell, G. F. Hennion, J. Am. Chem.
Soc. 1938, 60, 718; d) G. W. Stacy, R. A. Mikulec in Organic Syntheses,
Coll. Vol. 4 (Ed.: N. Rabjohn), Wiley, New York, 1963, p. 13; e) G. A.
Olah, D. Meider, Synthesis 1978, 671.
[6] a) M. Tokunaga, Y. Wakatsuki, Angew. Chem. 1998, 110, 3024; Angew.
Chem. Int. Ed. 1998, 37, 2867; b) T. Suzuki, M. Tokunaga, Y.
Wakatsuki, Org. Lett. 2001, 3, 735; c) M. Tokunaga, T. Suzuki, N.
Koga, T. Fukushima, A. Horiuchi, Y. Wakatsuki, J. Am. Chem. Soc.
2001, 123, 11917; d) D. B. Grotjahn, C. D. Incarvito, A. L. Rheingold,
Angew. Chem. 2001, 113, 4002; Angew. Chem. Int. Ed. 2001, 40, 3884.
[7] a) J. Harpern, B. R. James, A. L. W. Kemp, J. Am. Chem. Soc. 1961, 83,
4097; b) J. Harpern, B. R. James, A. L. W. Kemp, J. Am. Chem. Soc.
1966, 88, 5142; c) T. Khan, S. B. Halligudi, S. Shukla, J. Mol. Catal.
1990, 58, 299.
[8] a) B. R. James, G. L. Rempel, J. Am. Chem. Soc. 1969, 91, 863; b) J.
Blum, H. Huminer, H. Alper, J. Mol. Catal. 1992, 75, 153.
[9] a) W. Hiscox, P. W. Jennings, Organometallics 1990, 9, 1997; b) W.
Baidossi, M. Lahav, J. Blum, J. Org. Chem. 1997, 62, 669; c) L. W.
Francisco, D. A. Moreno, J. D. Atwood, Organometallics 2001, 20,
4237.
[14] The authors reported 200 400 turnovers for propynol and but-1-yn-3-
ol, however, the product yield was no more than approximately 2 and
6%, respectively.
[15] a) For catalysis by gold species, see: G. Dyker, Angew. Chem. 2000,
112, 4407; Angew. Chem. Int. Ed. 2000, 39, 4237; b) A special issue on
gold catalysis has appeared: Catal. Today 2002, 72, whole issue.
[16] One reviewer pointed out
a possible mechanism that involves
methanol addition forming a dimethyl acetal as a transient inter-
mediate, which is rapidly hydrolyzed under the acidic conditions to
give the final ketone product. Although we are unable to rigorously
exclude this possibility when the reaction is run in methanol, the
following points strongly support the theory that the reaction involves
the direct attack of water. First, the hydration reaction reported herein
proceeds in non-alcoholic solvents. Second, the regiochemistry of the
hydration reaction is not in full agreement with the methanol addition
reaction. In addition, the [cis-PtCl2(tppts)2]-catalyzed reaction of
alkynes in aqueous methanol showed that hydration proceeds
preferentially, without forming the methanol adduct.[9a] Note that this
platinum-catalyzed hydration was run in the absence of acid
promoters.
[17] The reaction of 5-hexyn-1-ol did not form any other product and the
substrate could be recovered nearly quantitatively.
[18] Acid-catalyzed Rupe-type rearrangement of the starting propargylic
alcohols appeared to be another possibility leading to the formation of
the a,b-unasturated aldehydes. However, the following control
experiments exclude this possibility. A reaction similar to entry 7,
Table 2 run using only H3PW12O40 in the absence of the gold complex
did not furnish the a,b-unsaturated aldehyde and the 1-ethynyl-1-
cyclohexanol was recovered quantitatively. Another control experi-
ment using H3PW12O40 and PPh3 (1 mol% relative to 1-ethynyl-1-
cyclohexanol) in the absence of the gold complex did not form the a,b-
unsaturated aldehyde either. In general, Rupe rearrangement of
tertiary a-acetylenic alcohols gives a,b-unsaturated ketones as the
major product, which is not consistent with our observation. See: S.
Swaminathan, K. V. Narayanan, Chem. Rev. 1971, 71, 429.
[10] a) Y. Fukuda, K. Utimoto, J. Org. Chem. 1991, 56, 3729; b) Y. Fukuda,
K. Utimoto, Bull. Chem. Soc. Jpn. 1991, 64, 2013.
[11] a) K. Imi, K. Imai, K. Utimoto, Tetrahedron Lett. 1987, 28, 3127;
b) I. K. Meier, J. A. Marsella, J. Mol. Catal. 1993, 78, 31.
[12] J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. 1998, 110, 1475;
Angew. Chem. Int. Ed. 1998, 37, 1415.
Angew. Chem. Int. Ed. 2002, 41, No. 23
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4123-4565 $ 20.00+.50/0
4565