RSC Advances
Paper
together with 5 mol% of the chosen copper species, 5 mol% of
ligand, 5 mol% of TEMPO, and 10 mol% of NMI. Aer a certain
reaction time, n-dodecane (0.2 mmol) was added as an internal
standard for the determination of yield and selectivity. The
4 (a) Y. Luan, Y. Qi, H. Gao, N. Zheng and G. Wang, J. Mater.
Chem. A, 2014, 2, 20588–20596; (b) L. Wang, J. Li, W. Dai,
Y. Lv, Y. Zhang and S. Gao, Green Chem., 2014, 16, 2164–
2173; (c) C. Qi, T. Qin, D. Suzuki and J. A. Porco Jr, J. Am.
Chem. Soc., 2014, 136, 3374; (d) Y. Luan, Y. Qi, H. Gao,
R. S. Andriamitantsoa, N. Zheng and G. Wang, J. Mater.
Chem. A, 2015, 3, 17320–17331.
5 (a) K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani and
K. Kaneda, J. Am. Chem. Soc., 2000, 122, 7144–7145; (b)
H. Shimizu, S. Onitsuka, H. Egami and T. Katsuki, J. Am.
Chem. Soc., 2005, 127, 5396–5413.
1
ltered liquid samples were analyzed by GC-MS and H-NMR.
MIL-101-N-2-pyc ligand recycling
At the end of each oxidation reaction cycle, the MIL-101-N-2-pyc
ligand was recovered by centrifugation of the solution mixture
followed by washing with 5–10 mL of CH3CN. Aer being
immersed in the solvent for 12 h and dried at 40 ꢁC under
vacuum for 12 h, the MIL-101-N-2-pyc solid ligand was reused.
6 L. Liu, M. Yu, B. B. Wayland and X. Fu, Chem. Commun.,
2010, 46, 6353–6355.
7 S. E. Allen, R. R. Walvoord, R. Padilla-Salinas and
M. C. Kozlowski, Chem. Rev., 2013, 113, 6234–6458.
8 (a) J. M. Hoover and S. S. Stahl, J. Am. Chem. Soc., 2011, 133,
16901–16910; (b) J. M. Hoover and S. S. Stahl, Org. Synth.,
2013, 90, 240–250.
Material characterization
Scanning electron microscope (SEM) images of samples were
obtained with a ZEISS SUPRA 55 (the samples for the SEM
measurements were rst dispersed in ethanol, sonicated for
a few minutes, and then supported onto the silicon slice and the
holey carbon lm on a Cu grid, respectively). The BET surface
area, pore volume and pore diameter were measured by an
AUTOSORB-1C analyzer. The phase composition of the prod-
ucts was characterized by X-ray powder diffraction (XRD, Cu Ka
radiation, l ¼ 0.1542 nm) via a M21X diffractometer. Fourier
transform infrared spectra (FT-IR) were collected by a Nicolet
6700 spectrometer. Thermogravimetric analysis (TGA) was
conducted by using a Netzsch STA449F at a heating rate of 10 ꢁC
minꢂ1 under the N2 ow. 1H-NMR spectra were recorded on
a Varian Unity Plus 400 instrument using CDCl3 as the solvent.
The results were analyzed by gas chromatography-mass spec-
trometry using n-dodecane as the internal standard (GC-MS,
Agilent 7890/5975C-GC/MSD, HP5-MS column, Ar carrier gas,
´
´
9 I. E. Marko, P. R. Giles, M. Tsukazaki, I. Chelle-Regnaut,
A. Gautier, S. M. Brown and C. J. Urch, J. Org. Chem., 1999,
64, 2433–2439.
10 (a) M. F. Semmelhack, C. R. Schmid, D. A. Cortes and
C. S. Chou, J. Am. Chem. Soc., 1984, 106, 3374–3376; (b)
P. Gamez, I. W. C. E. Arends, J. Reedijk and R. A. Sheldon,
Chem. Commun., 2003, 2414–2415; (c) N. Jiang and
A. J. Ragauskas, J. Org. Chem., 2006, 71, 7087–7090; (d)
P. J. Figiel, M. Leskela and T. Repo, Adv. Synth. Catal.,
2007, 349, 1173–1179; (e) P. J. Figiel, A. Sibaouih,
J. U. Ahmad, M. Nieger, M. T. Raisanen, M. Leskela and
T. Repo, Adv. Synth. Catal., 2009, 351, 2625–2632; (f)
S. Mannam, S. K. Alamsetti and G. Sekar, Adv. Synth.
Catal., 2007, 349, 2253–2258.
´
11 (a) I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown and
ꢁ
200 C).
C. J. Urch, Science, 1996, 274, 2044–2046; (b) V. Pascanu,
´
A. Bermejo Gomez, C. Ayats, A. E. Platero-Prats, F. Carson,
`
´
J. Su, Q. Yao, M. A. Pericas, X. Zou and B. Martın-Matute,
ACS Catal., 2015, 5, 472–479; (c) T. Mitsudome, Y. Mikami,
K. Ebata, T. Mizugaki, K. Jitsukawa and K. Kaneda, Chem.
Acknowledgements
This work is supported by Beijing Natural Science Foundation
(2172037) and National Natural Science Foundation of China
(No. 51503016). P. Y. thanks the State Key Laboratory of
Chemical Resource Engineering and Y. L. thanks the Funda-
mental Research Funds for the Central Universities (Grant No.
FRF-TP-16-004A3) for funding support.
Commun.,
2008,
4804–4806;
(d)
P.
J.
Figiel,
M. N. Kopylovich, J. Lasri, M. F. C. Guedes da Silva,
J. J. R. Frausto da Silva and A. J. L. Pombeiro, Chem.
Commun., 2010, 46, 2766–2768.
´
12 S. M. Cohen, Chem. Sci., 2010, 1, 32–36.
13 (a) S. J. Garibay, Z. Wang and S. M. Cohen, Inorg. Chem.,
2010, 49, 8086–8091; (b) W. Zhu, C. He, P. Wu, X. Wu and
C. Duan, Dalton Trans., 2012, 41, 3072–3077.
Notes and references
1 (a) J. C. J. Bart and S. Cavallaro, Ind. Eng. Chem. Res., 2015, 54, 14 X. Li, R. V. Zeeland, R. V. Maligal-Ganesh, Y. Pei, G. Power,
567–576; (b) M. G. Clerici and O. A. Kholdeeva, Liquid Phase L. Stanley and W. Huang, ACS Catal., 2016, 6, 6324–6328.
Oxidation Via Heterogeneous Catalysis: Organic Synthesis and 15 (a) L. Rogan, N. Louise Hughes, Q. Cao, L. M. Dornana and
Industrial Applications, John Wiley & Sons, Hoboken, 2013.
2 T. Mallat and A. Baiker, Chem. Rev., 2004, 104, 3037–3058.
3 (a) M. S. Sigman and D. R. Jensen, Acc. Chem. Res., 2006, 39,
M. J. Muldoon, Catal. Sci. Technol., 2014, 4, 1720–1725; (b)
M. M. Hossaina and S.-G. Shyu, Adv. Synth. Catal., 2010,
352, 3061–3068.
221–229; (b) V. Pascanu, A. B. Gomez, C. Ayats, A. E. Platero- 16 (a) J. Canivet, S. Aguado, Y. Schuurman and D. Farrusseng, J.
`
Prats, F. Carson, J. Su, Q. Yao, M. A. Pericas, X. Zou and
Am. Chem. Soc., 2013, 135, 4195–4198; (b) C. J. Doonan,
W. Morris, H. Furukawa and O. M. Yaghi, J. Am. Chem.
Soc., 2009, 131, 9492–9493; (c) A. Sasmal, E. Garribba,
C. Rizzoli and S. Mitra, Inorg. Chem., 2014, 53, 6665–6674.
´
B. M. ın-Matute, ACS Catal., 2015, 5, 472–479; (c) C. Qi,
Y. Xiong, V. Eschenbrenner-Lux, C. Cong and J. A. Porco Jr,
J. Am. Chem. Soc., 2016, 138, 798.
22358 | RSC Adv., 2017, 7, 22353–22359
This journal is © The Royal Society of Chemistry 2017