C
Synlett
K. Zheng et al.
Letter
Table 2 Control Experiments
References and Notes
CHO
COOH
(1) (a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of
Organic Compounds: Mechanistic Principles and Synthetic Meth-
odology Including Biochemical Processes; Academic Press: New
York, 1981. (b) Simandi, L. Catalytic Activation of Dioxygen by
Metal Complexes; Kluwer Academic: Boston, 1992. (c) Henry,
P. M. Palladium Catalyzed Oxidation of Hydrocarbons; Reidel:
Dordrecht, 1980.
O2 (balloon)
conditions
3
2a
b
Entry
Catalyst
Light
Yield (%)
(
2) (a) Nguyen, T. T.; Grigorjeva, L.; Daugulis, O. Angew. Chem. Int.
Ed. 2018, 57, 1688. (b) Li, Q.; Meng, L.; Zhou, S.; Deng, X.; Wang,
N.; Ji, Y.; Peng, Y.; Xing, J.; Yao, G. Eur. J. Med. Chem. 2019, 180,
1
2
3
4
CBr
CBr
–
4
400 nm
–
97
4
5
509. (c) Oliveira, C.; Bagetta, D.; Cagide, F.; Teixeira, J.; Amorim,
–
1
R.; Silva, T.; Garrido, J.; Remiao, F.; Uriarte, E.; Oliveira, P. J.;
Alcaro, S.; Ortuso, F.; Borges, F. Eur. J. Med. Chem. 2019, 174, 116.
(d) Zhang, Z.; Hao, K.; Li, H.; Lu, R.; Liu, C.; Zhou, M.; Li, B.; Meng,
Z.; Hu, Q.; Jiang, C. Eur. J. Med. Chem. 2019, 181, 111564.
–
400 nm
400 nm
23
64
5c
CBr
4
a
Reaction conditions: PhCHO (3; 0.5 mmol), CBr
balloon, rt, 48 h.
GC yields with 1,4-dioxane as internal standard.
4
(10 mol%), MeCN (10
mL), 60 W 400 nm LED, O
2
(3) (a) Miki, J.; Osada, Y.; Tachibana, Y.; Shikada, T. Catal. Lett. 1995,
30, 263. (b) Yoshino, Y.; Hayashi, Y.; Iwahama, T.; Sakaguchi, S.;
Ishii, Y. J. Org. Chem. 1997, 62, 6810. (c) Yamazaki, S. Org. Lett.
b
c
4
Å molecular sieves added.
1999, 1, 2129. (d) Rogovin, M.; Neumann, R. J. Mol. Catal. A:
Chem. 1999, 138, 315. (e) Bandyopadhyay, R.; Biswas, S.;
Bhattacharyya, R.; Guha, S.; Mukherjee, A. K. Chem. Commun.
(
II), which is then transformed into benzaldehyde (3).9b Fi-
nally, benzaldehyde (3) is further oxidized to benzoic acid
2) on prolonging the reaction time.
1999, 1627. (f) Das, B. K.; Clark, J. H. Chem. Commun. 2000, 605.
10
(g) Fraga-Dubreuil, J.; Garcia-Verdugo, E.; Hamley, P. A.;
Vaquero, E. M.; Dudd, L. M.; Pearson, I.; Housley, D.;
Partenheimer, W.; Thomas, W. B.; Whiston, K.; Poliakoff, M.
Green Chem. 2007, 9, 1238. (h) Wang, J.-Q.; He, L.-N. New J.
Chem. 2009, 33, 1637. (i) Nakamura, R.; Obora, Y.; Ishii, Y. Adv.
Synth. Catal. 2009, 351, 1677. (j) Cui, L.-Q.; Liu, K.; Zhang, C. Org.
Biomol. Chem. 2011, 9, 2258. (k) Hu, Y.; Zhou, L.; Lu, W. Synthesis
(
blue LED (400 nm)
CBr4
• CBr3
+
Br •
CH3
or
CBr4
CT complex
2017, 49, 4007.
(
4) (a) Ishii, Y.; Nakayama, K.; Takeno, M.; Sakaguchi, S.; Iwahama,
T.; Nishiyama, Y. J. Org. Chem. 1995, 60, 3934. (b) Paul, S.;
Nanda, P.; Gupta, R. Synlett 2004, 531. (c) Lu, T.; Mao, Y.; Yao, K.;
Xu, J.; Lu, M. Catal. Commun. 2012, 27, 124. (d) Liu, G.; Tang, R.;
Wang, Z. Catal. Lett. 2014, 144, 717. (e) Ozen, R. Asian J. Chem.
•
CH3
CH
O
H
2
CHO
2
CO H
O
Br •
HBr
O2
O2
ref. 9
ref. 10
2
014, 26, 941. (f) Heidari, M.; Sedrpoushan, A.; Mohannazadeh,
1
I
II
3
2
F. Org. Process Res. Dev. 2017, 21, 641.
(
5) (a) Itoh, A.; Hirashima, S.-i. Synthesis 2006, 1757. (b) Itoh, A.;
Hashimoto, S.; Kodama, T.; Masaki, Y. Synlett 2005, 2107.
6) Sugai, T.; Itoh, A. Tetrahedron Lett. 2007, 48, 9096.
7) Arylcarboxylic Acids 1a–v; General Procedure
Scheme 3 Plausible mechanism
(
(
In conclusion, we have developed a simple and effective
method for the photoinduced aerobic oxidation of substi-
tuted toluenes to benzoic acids under mild metal-free con-
CAUTION: The reaction is inherently explosive in nature
because significant concentrations of peroxide and hydroperox-
ide intermediates are generated. Appropriate precautions
should be adopted. The reaction should not be scaled up.
A solution of the appropriate substrate 1 (0.5 mmol) and CBr4
ditions. The method uses easily handled CBr as the only
4
initiator and a 400 nm LED as a source of visible light. The
transformation exhibits a broad scope and good functional-
group compatibility.
(0.05 mol) in anhyd MeCN (10 mL) was stirred in a round-
bottom flask fitted with an O balloon, and irradiated externally
2
with a 60 W 400 nm LED at rt. When the reaction was complete
(
TLC), the solvent was evaporated under reduced pressure. The
Funding Information
residue was purified by column chromatography (silica gel).
Benzoic Acid (2a)
This work was supported by the National Key Research and Develop-
ment Program of China (2017YFC0210900).()
White solid; yield: 58.6 mg (96%); mp: 120–121 °C; R = 0.73
f
1
(
50% EtOAc–PE). H NMR (500 MHz, CDCl ): = 8.34–8.02 (m, 2
3
H), 7.71–7.54 (m, 1 H), 7.48 (t, J = 7.9 Hz, 2 H).
(
(
8) King, J. W.; Quinney, P. R. J. Chromatogr. 1970, 49, 161.
9) (a) Tripathi, S.; Singh, S. N.; Yadav, L. D. S. RSC Adv. 2016, 6,
14547. (b) Sandhiya, L.; Zipse, H. Chem. Eur. J. 2015, 21, 14060.
Supporting Information
Supporting information for this article is available online at
https://doi.org/10.1055/s-0039-1691534.
S
u
p
p
orti
n
g Inform ati
o
n
S
u
p
p
orit
n
g Inform ati
o
n
(10) Sankar, M.; Nowicka, E.; Carter, E.; Murphy, D. M.; Knight, D. W.
Bethell D.; Hutchings, G. J. Nat. Commun. 2014, 5, doi:
10.1038/ncomms 4332.
©
2019. Thieme. All rights reserved. Synlett 2019, 30, A–C