Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 4
COMMUNICATION
Journal Name
heteroarylmethanols,
pyridin-4-ylmethanol,
pyridin-2-
ylmethanol and thiophen-2-ylmethanol, were attempted as the Foundation of China (Grant No. 217721D0O8I): 1a0n.1d039N/aDt0iCoCn0a5l7K9e9Ay
substrates, and the first two substrates provided excellent R&D Program of China (2016YFD0201207) for financial support.
yields (see 13k and 13l, 90% and 98% yields, respectively).
However, thiophen-2-ylmethanol only gave 56% yield because
of presence of sulfur atom (see 13m). Subsequently, two
Conflicts of interest
aliphatic primary alcohols were used in the photocatalytic
aerobic oxidation, and they also provided the satisfactory
results (see 13n and 13o, 62% and 72% yields, respectively).
There are no conflicts to declare.
Therefore, our sodium trifluoromethanesulfinate-mediated Notes and references
photocatalytic strategy is very useful method for the aerobic
oxidation of primary alcohols to carboxylic acids.
1
2
T. Mallat and A. Baiker, Chem. Rev., 2004, 104, 3037-3058.
(a) M. E. González-Núñez, R. Mello, A. Olmos, R. Acerete and G. Asensio,
J. Org. Chem., 2006, 71, 1039-1042; (b) M. Uyanik and K. Ishihara, Chem.
Commun., 2009, 2086-2099; (c) T. Dohi, K. I. Fukushima, T. Kamitanaka,
K. Morimoto, N. Takenaga and Y. Kita, Green Chem., 2012, 14, 1493-1501;
(d) D.; Shen, C. Miao, D. Xu, C. Xia and W. Sun, Org. Lett., 2015, 17, 54−57;
CF3SO2Na (3a, 5 mol%)
O2 or air (1 atm.)
R
OH
R
COOH
12
LED (400-405 nm)
CH3CN, rt, 12 h
13
(e) X. Zou, A. Goswami and T. Asefa, J. Am. Chem. Soc., 2013, 135,
1
7242−17245.
COOH
MeO
COOH
COOH
COOH
COOH
3
4
Y. Nosaka and A. Y. Nosaka, Chem. Rev., 2017, 117, 11302−11336.
(a) R. A. Sheldon, I. W. C. E. Arends, G.-J. ten Brink and A. Dijksman, Acc.
Chem. Res., 2002, 35, 774–781; (b) K. Yamaguchi, K. Mori, T. Mizugaki, K.
Ebitani and K. Kaneda, J. Am. Chem. Soc., 2000, 122, 7144–7145.
(a) S. S. Stahl, Angew. Chem., Int. Ed., 2004, 43, 3400–3420; (b) K. P.
Peterson and R. C. Larock, J. Org. Chem., 1998, 63, 3185–3189.
(a) I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown and C. J. Urch,
Science, 1996, 274, 2044–2046; (b) I. E. Marko, A. Gautier, R. Dumeunier,
K. Doda, F. Philippart, S. M. Brown and C. J. Urch, Angew. Chem., Int. Ed.,
2004, 43, 1588–1591; (c) T. Iwahama, Y. Yoshino, T. Keitoku, S. Sakaguchi
and Y. Ishii, J. Org. Chem., 2000, 65, 6502–6507.
F
Cl
Br
1
3a, 96%
13b, 92%
COOH
Br
13c, 95%
COOH
O N
13d, 93%
COOH
13e, 95%
COOH
COOH
5
6
F3C
2
Br
1
13h, 91%
13g, 91%
13i, 92%
13j, 81%
3f, 89%
COOH
COOH
COOH
COOH
a
N
N
13n , 62%
S
1
3k, 90%
13l, 98%
13m, 56%
COOH
a
1
3o , 72%
7
(a) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113,
5
322–5363; (b) M. D. Kärkäs, J. A. Porco, Jr and C. R. J. Stephenson, Chem.
Scheme 5 Substrate scope for the photocatalytic aerobic oxidation of
primary alcohols (12) to carboxylic acids (13). Reaction conditions:
Rev., 2016, 116, 9683–9747; (c) N. Corrigan, S. Shanmugam. J. Xu and C.
Boyer, Chem. Soc. Rev., 2016, 45, 6165–6212; (d) T. P. Yoon, M. A. Ischay
and J. Du, Nat. Chem., 2010, 2, 527–532; (e) J. M. R. Narayanam and C. R.
J. Stephenson, Chem. Soc. Rev., 2011, 40, 102–113; (f) J. Xuan and W.-J.
Xiao, Angew. Chem., Int. Ed., 2012, 51, 6828–6838; (g) Y. Chen, L.-Q. Lu,
D.-G. Yu, C.-J. Zhu and W.-J. Xiao, Sci. China Chem., 2019, 62, 24–57; (h)
J. Wang, B. Li, L.-C. Liu, C. Jiang, T. He and W. He, Sci. China Chem., 2018,
under O
CF SO
2
or air atmosphere (1 atm.), primary alcohol (12) (0.1 mmol),
o
3
2
Na (3a) (10 mol%), MeCN (1.0 mL), room temperature (~25 C),
time (12 h) in a sealed tube under irradiation of LED (400-405 nm).
a
Isolated yields. Time (48 h).
6
1, 1594–1599.
Finally, we surveyed the photocatalytic aerobic oxidation of
alcohol 14 containing two different kinds of hydroxyls (Scheme
), and product 15 containing a carbonyl and a carboxyl was
obtained in 87% isolated yield. The result showed that our
method was very practical for synthesis of multi-functional
compounds.
8
For selected two reviews, see: (a) X. Lang, W. Ma, C. Chen, H. Ji and J.
Zhao, Acc. Chem. Res., 2014, 47, 355−363; (b) X. Cheng, X. Hu and Z. Lu,
Chin. J. Org. Chem., 2017, 37, 251–266; For representative examples of
photoinduced alcohol oxidation, see: (c) Y. Chen, Z. U. Wang, H. Wang, J.
Lu, S. Yu and H. Jiang, J. Am. Chem. Soc., 2017, 139, 2035−2044; (d) Q.
Wang, M. Zhang, C. Chen, W. Ma and J. Zhao, Angew. Chem., Int. Ed.,
6
2
010, 49, 7976-7979; (e) F. Su, S. C. Mathew, G. Lipner, X. Fu, M.
Antonietti, S. Blechert and X. Wang, J. Am. Chem. Soc., 2010, 132, 16299-
6301; (f) N. F. Nikitas, D. I. Tzaras, I. Triandafillidi and C. G. Kokotos,
CF3SO2Na (3a, 10 mol%)
OH
COOH
1
O2 (1 atm.)
HO
O
Green Chem., 2020, 22, 471–477; (g) A. H. Tolba, F. Vávra, J. Chudoba and
R. Cibulka, J. Org. Chem., 2020, 85, 1579–1585.
LED (400-405 nm)
CH3CN, rt, 12 h
1
4
0
.2 mmol
15, 87%
9
(a) D. A. Nicewicz and D. W. C. MacMillan, Science, 2008, 322, 77–80; (b)
M. A. Ischay, M. E. Anzovino, J. Du and T. P. Yoon, J. Am. Chem. Soc., 2008,
130, 12886–12887; (c) J. M. R. Narayanam, J. W. Tucker and C. R.
Stephenson, J. Am. Chem. Soc., 2009, 131, 8756–8757.
Scheme 6 Photocatalytic aerobic oxidation of alcohol containing two
different kinds of hydroxyls.
In summary, we have developed a highly efficient sodium
trifluoromethanesulfinate-mediated photocatalytic aerobic
oxidation of alcohols for the first time and found that the in-situ
formed pentacoordinate sulfide derived from sodium
trifluoromethanesulfinate and oxygen acted as the 13 N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075–10166.
photocatalyst. The photoredox aerobic oxidation of secondary 14 D. Ravelli, M. Fagnoni and A. Albini, Chem. Soc. Rev., 2013, 42, 97–113.
and primary alcohols provides the corresponding ketones and
carboxylic acids, respectively, in high to excellent yields. We
believe that the efficient and practical method will be widely 17 X. Zhu, Y. Liu, C. Liu, H. Yang and H. Fu, Green Chem., 2020, 2, 4357-4363.
1
1
1
0
1
2
S. Poplata, A. Tröster, Y.-Q. Zou and T. Bach, Chem. Rev., 2016, 116, 9748–
9815.
K. L. Skubi, T. R. Blum and T. P. Yoon, Chem. Rev., 2016, 116, 10035–
1
0074.
R. N. Perutz and B. Procacci, Chem. Rev., 2016, 116, 8506–8544.
1
1
5
6
D. A. Nicewicz and T. M. Nguyen, ACS Catal., 2014, 4, 355–360.
E. Arceo, E. Montroni and P. Melchiorre, Angew. Chem., Int. Ed., 2014,
5
3, 12064–12068.
1
8
F. G. Cirujano, I. Luz, M. Soukri, C. Van Goethem, I. F. J. Vankelecom, M.
Lail and D. E. De Vos, Angew. Chem., Int. Ed., 2017, 56, 13302–13306.
K. McKeage and G. M. Keating, Drugs, 2011, 71, 1917−1946.
used in organic synthesis.
1
9
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins