Mobile Holes in Radiolysis of Squalane
J. Phys. Chem., Vol. 100, No. 35, 1996 14687
cations are scavenged at slower rates ((0.5-1) × 109 mol-1
dm3 s-1). Proton transfer reactions are even slower. The
scavenging of the mobile ions proceeds with a rate constant
(5-7) × 109 mol-1 dm3 s-1 1
.
Our identification of the mobile ions in squalane as the solvent
radical cations was supported by (i) the absorption spectrum
and (ii) the fast generation of solute radical cations on
scavenging.1 In this paper we demonstrate (iii) the participation
of the mobile ions in the formation of FDMR.
We believe that the high mobility of the squalane radical
cations is due to fast resonant charge transfer with τres ≈ 200
ps.1 For this short τres, the FDMR spectrum of the solvent hole
must be a single narrow line. However, at room temperature
the hole is too short-lived to be observed by FDMR. The narrow
FDMR signals observed by Tadjikov et al.13 are from impurity
ions.
Acknowledgment. We thank Dr. C. D. Jonah for his help
with the Monte Carlo simulations, Dr. M. C. Sauer, Jr., for
constructive criticism, and Dr. D. W. Werst and Mr. R. Lowers
for their operation of the accelerator.
References and Notes
(1) Shkrob, I. A.; Sauer, M. C., Jr.; Trfiunac, A. D. J. Phys. Chem.
1996, 100, 5993.
(2) Willard, J. E. In Radiation Chemistry: Principles and Applications;
Farhataziz, Rodgers, M. A. J. Eds.; VCH: New York, 1987; p 395.
(3) Werst, D. W.; Trifunac, A. D. J. Phys. Chem. 1991, 95, 3466.
(4) Sauer, M. C., Jr.; Jonah, C. D.; Naleway, C. A. J. Phys. Chem.
1991, 95, 730.
(5) Sauer, M. C., Jr.; Jonah, C. D.; Le Motais, B. C.; Chernowitz, A.
C. J. Phys. Chem. 1988, 92, 4099.
(6) Sauer, M. C., Jr.; Jonah, C. D. J. Phys. Chem. 1992, 96, 5872.
(7) Shkrob, I. A.; Trifunac, A. D. J. Chem. Phys. 1995, 103, 551.
(8) Poole, C. P., Jr. ESR: A ComprehensiVe Treatise on Experimental
Techniques; Wiley Interscience: New York, 1967.
(9) Landolt-Bornstein. Magnetic Properties of Free Radicals; Springer-
Verlag: New York, 1977.
(10) Smith, J. P.; Trifunac, A. D. J. Phys. Chem. 1981, 85, 1645.
(11) Desrosiers, M. F.; Trifunac, A. D. J. Phys. Chem. 1986, 90, 1560.
(12) Okazaki, M.; Nunome, K.; Matsuura, K.; Toriyama, K. Bull. Chem.
Soc. Jpn. 1990, 63, 1396.
(13) Tadjikov, B. M.; Melekhov, V. I.; Anisimov, O. A.; Molin, Yu. N.
Radiat. Phys. Chem. 1989, 34, 353.
(14) Veselov, A. V.; Bizyaev, V. L.; Melekhov, V. I.; Anisimov, O.
A.; Molin, Yu. N. Radiat. Phys. Chem. 1989, 34, 567.
(15) Werst, D. W.; Percy, L. T.; Trifunac, A. D. Chem. Phys. Lett. 1988,
153, 45.
(16) Shkrob, I. A.; Werst, D. W.; Trifunac, A. D. J. Phys. Chem. 1994,
98, 13262.
(17) Levin, R. D.; Lias, S. G. Ionization Potential and Appearance
Potential Measurements; 1971-1981 NRSDS-NBS 71.
(18) Chawla, O. P.; Fessenden, R. W. J. Phys. Chem. 1975, 79, 2693.
(19) Schmidt, K. H.; Sauer, M. C., Jr.; Lu, Y.; Liu, A. J. Phys. Chem.
1990, 94, 244.
Figure 6. FDMR spectra from N2-saturated solution of squalane with
2 × 10-5 mol dm-3 perylene and (i) no, and (ii) 5 × 10-3 and 7 ×
10-4 mol dm-3 triethylamine (50 ns µw pulse, 50 ns boxcar gate, λ >
460 nm). Traces i and ii were obtained at td ) 50 ns; for other traces
td is indicated in the figure. The lines from TEA•+ are marked with
arrows. These lines emerge on the top of the broad signal from SQ•+
from the earliest observation times. The spectra were normalized by
the signal at the spectrum center.
observed from the earliest detection time (Figure 6) and
indicated 20-30% conversion of the holes.
Another type of FDMR experiment was performed with
perylene/nitrobenzene-d5 solutions. The emission from 1Pe* at
λ > 460 nm was collected. Due to reaction 20, for [d5NB] )
0.06 mol dm-3 the lifetime of Pe•- is 10 ns. The recombination
of the [SQ•+ d5NB•-] pairs does not yield the fluorescence at λ
> 460 nm. Thus, the only pair that yields FDMR at λ > 460
nm and td > 50 ns is [Pe•+ d5NB•-]. Experimentally, the FDMR
signal from Pe•+ can be observed even for [Pe] ) 2.4 × 10-5
mol dm-3. At this concentration, the charge transfer from SQ•+
would take 50 µs. The FDMR signal linearly increases with
[Pe] (2 × 10-5 to 10-3 mol dm-3). This result implies the rapid
formation of Pe•+ competing with the decay of the squalane
hole. To summarize, our FDMR data support the View that
the mobile ions reacting with triethylamine and aromatic solutes
are short-liVed solVent radical cations of squalane.
(20) Hummel, A. AdV. Radiat. Chem. 1974, 4, 1.
(21) Warman, J. M.; Asmus, K.-D.; Schuler, R. H. J. Phys. Chem. 1969,
73, 931.
(22) Berlman, I. B. Handbook of Fluorescence Spectra of Aromatic
Molecules, 2nd ed.; Academic Press: New York, 1971.
(23) Werst, D. W. Chem. Phys. Lett. 1996, 251, 315.
(24) Lefkowitz, S. M.; Trifunac, A. D. J. Phys. Chem. 1984, 88, 77.
(25) Teather, G. G.; Klassen, N. V. J. Phys. Chem. 1981, 85, 3044.
(26) Muto, Y.; Nakato, Y.; Tsubomura, H. Chem. Phys. Lett. 1971, 15,
147.
Conclusion
Radiolysis of squalane yields a mobile solvent hole and
normally diffusing olefin ions. Only the latter can be observed
directly by FDMR. The mobile ion is scavenged by aromatic
solutes significantly faster than other cations. In squalane, the
fastest ET reactions of normally diffusing ions have the rate
constants ∼(1.6-1.8) × 109 mol-1 dm3 s-1. Most aromatic
(27) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin,
R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, 1.
JP9532475