M. Soleiman-Beigi and M. Hemmati
C. Périgaud, A. Pellet, H. J. Vial, S. Peyrottes, J. Med. Chem. 2012,
55, 4619. h) H. L. Fisher, Ind. Eng. Chem. 1950, 42, 1978.
Conclusions
[2] a) A. Christoforou, G. Nicolaou, Y. Elemes, Tetrahedron Lett. 2006, 47,
9211. b) M. A. Zolfigol, Tetrahedron Lett. 2001, 57, 9509. c) R. Leino,
J.-E. Lonnqvist, Tetrahedron Lett. 2004, 45, 8489. d) K. Tanaka, K. Ajiki,
Tetrahedron Lett. 2004, 45, 25. e) R. Hunter, M. Caira, N. Stellenboom,
J. Org. Chem. 2006, 71, 8268. f) A. Akdag, T. Webb, S. D. Worley,
Tetrahedron Lett. 2006, 47, 3509. g) J. K. Vandavasi, W. -P. Hu, C.-Y.
Chen, J.-J. Wang, Tetrahedron 2011, 67, 8895. h) A. Ghorbani-
Choghamarani, M. Nikoorazm, H. Godarziafshar, A. Shokr, H. Almasi,
J. Chem. Sci. 2011, 123, 453. i) R. Hosseinzadeh, M. Tajbakhsh, H.
Khaledi, K. Ghodrati, Monatsh. Chem. 2007, 138, 871. j) C. C. Silveira,
S. R. Mendes, Tetrahedron Lett. 2007, 48, 7469. k) P. J. Chai, Y. S. Li, C.
X. Tan, Chin. Chem. Lett. 2011, 22, 1403. l) G. W. Kabalka, M. S. Reddy,
M.-L. Yao, Tetrahedron Lett. 2009, 50, 7340.
In summary, in this study thioacetamide has been used as an
inexpensive and readily available sulfur transfer reagent in the
presence of KF/Al2O3. This strategy provides a new method for
the direct synthesis of symmetric diaryl and dialkyl disulfides from
aryl (alkyl) halides, which is more economical, comprehensive and
environmentally friendly than previous methods. Other advantages
of this process are the possibility of reusing the recyclable base
KF/Al2O3, ease of performing and controlling the reaction as well
as purification of the product, and avoidance of expensive and/
or dangerous reagents.
[3] a) H. Firouzabadi, N. Iranpoor, M. Abbasi, Tetrahedron Lett. 2010, 51,
508. b) D. W. Emerson, B. L. Bennett, S. M. Steinberg, Synth. Commun.
2005, 35, 631. c) H. Firouzabadi, N. Iranpoor, M. Gholinejad, Adv.
Synth. Catal. 2010, 352, 119. d) B. P. Bandgar, L. S. Uppalla, V. S.
Sadavarte, Tetrahedron Lett. 2001, 42, 6741. e) S. U. Sonavane, M.
Chidambaram, J. Almog, Y. Sasson, Tetrahedron Lett. 2007, 48,
6048. f) J.-X. Wang, L. Gao, D. Huang, Synth. Commun. 2002, 32,
963. g) V. Polshettiwar, M. Nivsarkar, J. Acharya, M. P. Kaushik,
Tetrahedron Lett. 2003, 44, 887. h) P. Dhar, N. Chidambaram, S.
Chandrasekaran, J. Org. Chem. 1992, 57, 1699. i) M. Tajbakhsh,
M. M. Lskouraj, M. S. Mahalli, Monatsh. Chem. 2008, 139, 1453.
[4] a) J. E. Arguello, L. C. Schmidt, A. B. Penenory, Org. Lett. 2003, 5, 4133.
b) M. Soleiman-Beigi, F. Mohammadi, Tetrahedron Lett. 2012,
53, 4028.
[5] a) R. A. Sheldon, in Green Chemistry and Catalysis (Eds: I. Arends,
U. Hanefeld), Wiley-VCH, Weinheim, 2007, p. 1. b) I. T. Horváth, P. T.
Anastas, Chem. Rev. 2007, 107, 2167. c) L. F. Tietze, in Domino
Reactions in Organic Synthesis (Eds: G. Brasche, K. Gericke), Wiley-VCH,
Weinheim, 2006, p. 470.
[6] a) E. Hammerschmidt, W. Bieber, F. Vogtle, Chem. Ber. 1978, 111,
2445. b) H. Singh, C. S. Gandhi, Synth. Commun. 1979, 9, 569. c) H.
Singh, S. Singh, A. S. Cheema, J. Indian Chem. Soc. 1976, 43, 682.
[7] a) G. W. Kabalka, L. Wang, V. Namboodiri, R. M. Pagni, Tetrahedron
Lett. 2000, 41, 5151. b) B. E. Blass, Tetrahedron 2002, 58, 9301, and
references therein.
Experimental
General Procedure, Synthesis of Diaryl (Dialkyl) Disulfides
from Aryl (Alkyl) Halides and Thioacetamide
2 mmol aryl (alkyl) halide, 2 mmol thioacetamide and 0.4 mmol
CuCl were added to a flask containing 2 ml DMF and 1.0 g KF
(40% by weight)/Al2O3. The reaction continued at 110°C under
atmospheric conditions until completion (5 h). The reaction prog-
ress was controlled by thin-layer chromatography. The reaction
mixture was then filtered. The filtrate was evaporated under
vacuum, CH2Cl2 (20 ml) was added and the mixture was washed
with H2O (2 × 15 ml). The organic layer was dried over anhydrous
Na2SO4. The solvent was evaporated to give the crude diaryl
(dialkyl) disulfide, which was purified by plate chromatography
(silica gel, n-hexane–ethyl acetate, 20:1). (See supporting informa-
1
tion for H-, 13C-, and 19F-NMR of the products).
Acknowledgment
[8] E. J. Lenardo, R. G. Lara, M. S. Silva, R. G. Jacob, G. Perin, Tetrahedron
Lett. 2007, 48, 7668.
[9] a) V. K. Yadav, K. G. Babu, M. Mittal, Tetrahedron 2001, 57, 7047. b) B.
Movassagh, M. Soleiman-Beigi, M. Nazari, Chem. Lett. 2008, 37, 22. c)
S.-X. Wang, J.-T. Li, W.-Z. Yang, T.-S. Li, Ultrasonics Sonochem. 2002,
9, 159.
Financial support from Ilam University Research Council is grate-
fully acknowledged.
References
[10] a) J. K. Kochi, Organomethalic Mechanisms and Catalysis,
Academic Press, New York, 1978; b) E. Sperotto, G. P. M. von Klink,
G. von Koten, J. G. de Vries, Dalton Trans. 2010, 39, 10338, and
references therein.
[1] a) S. Oae, Organic Sulfur Chemistry: Structure and Mechanism, CRC
Press, Boca Raton, FL, 1991. b) R. J. Cremlyn, An Introduction To
Organosulfur Chemistry, Wiley, New York, 1996. c) P. Metzner, A.
Thuillier, in Sulfur Reagents in Organic Synthesis (Eds: A. R. Katritzky,
O. Meth Cohn, C. W. Rees), Academic Press: San Diego, 1994. d) T.
Kondo, T. Mitsudo, Chem. Rev. 2000, 100, 3205. e) N. Taniguchi,
J. Org. Chem. 2007, 72, 1241. f) Y. Kishi, S. Nakatsuga, T. Fukuyama,
M. Havel, J. Am. Chem. Soc. 1973, 95, 6493. g) S. A. Caldarelli, M.
Hamel, J. F. Duckert, M. Ouattara, M. Calas, M. Maynadier, S. Wein,
Supporting Information
Additional supporting information may be found in the online
version of this article at the publisher’s web site.
wileyonlinelibrary.com/journal/aoc
Copyright © 2013 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2013, 27, 734–736