913
M. Soleiman-Beigi, F. Mohammadi
Letter
Synlett
tries 9 and 10) although several products were formed.
However, reactions were not complete after 24 hours in the
presence of electron-donating groups such as OMe (Table 3,
entries 11 and 12). The reaction efficiency for the synthesis
of symmetrical dialkyl disulfides was also examined and
was found to be as effective as aryl disulfides (Table 3, en-
tries 13–15).
Acknowledgment
We acknowledge financial support from the Ilam University Research
Council.
Supporting Information
Supporting information for this article is available online at
Although we cannot clearly determine the catalytic re-
action pathway for the synthesis of diaryl/dialkyl disulfides
from aryl/alkyl halides and potassium 5-methyl-1,3,4-oxa-
diazole-2-thiolate (1), the initial conversion of nickel(II) to
nickel(0) in the presence of EG is plausible.1d,e,m,18 The po-
tassium thiolate appears to be generated in the coupling re-
action between potassium 5-methyl-1,3,4-oxadiazole-2-
thiolate and the aryl/alkyl halide. The potassium thiolate
generated is then converted into the corresponding disul-
fide under the reaction conditions (Scheme 1).9
S
u
p
p
o
nrtIo
g
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(1) (a) Robbins, D. W.; Hartwig, J. F. Science 2011, 333, 1423.
(b) Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev. 2009, 38, 1598.
(c) Lipshutz, B. H.; Nihan, D. M.; Vinogradova, E.; Taft, B. R.;
Boskovic, Z. V. Org. Lett. 2008, 10, 4279. (d) Desmarets, C.;
Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029. (e) Gao, C.-Y.;
Cao, X.; Yang, L.-M. Org. Biomol. Chem. 2009, 7, 3922. (f) Huang,
C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 9541.
(g) Nishimura, A.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2012,
134, 15692. (h) Ogata, K.; Atsuumi, Y.; Shimada, D.; Fukuzawa,
S. Angew. Chem. Int. Ed. 2011, 50, 5896. (i) Nielsen, D. K.; Doyle,
A. G. Angew. Chem. Int. Ed. 2011, 50, 6056. (j) Binder, J. T.;
Cordier, C. J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 17003.
(k) Gavryushin, A.; Kofink, C.; Manolikakes, G.; Knochel, P. Tet-
rahedron 2006, 62, 7521. (l) Gao, C.-Y.; Yang, L.-M. J. Org. Chem.
2008, 73, 1624.
Ni(II)
L(EG)
L2Ni(0)
ArX
(2) (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature (London,
UK) 2014, 509, 299. (b) Rosen, B. M.; Quasdorf, K. W.; Wilson, D.
A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev.
2011, 111, 1346.
(3) (a) Baranano, D.; Mann, G.; Hartwig, J. F. Curr. Org. Chem. 1997,
1, 287. (b) Cristau, H. J.; Chabaud, B.; Chene, A.; Christol, H.
Synthesis 1981, 892. (c) Gomez-Benitez, V.; Baldovino-Panta-
leon, O.; Herrera-Alvarez, C.; Toscano, R. A.; Morales-Morales, D.
Tetrahedron Lett. 2006, 47, 5059. (d) Takagi, K. Chem. Lett. 1987,
2221.
(4) (a) Cremlyn, R. J. An Introduction to Organosulfur Chemistry; J.
Wiley and Sons: New York, 1996. (b) Liang, G.; Chen, J.; Chen, J.;
Li, W.; Chen, J.; Wu, H. Tetrahedron Lett. 2012, 53, 6768.
(c) Taniguchi, N. J. Org. Chem. 2006, 71, 7874. (d) Antebi, S.;
Alper, H. Tetrahedron Lett. 1985, 26, 2609. (e) Nishiyama, Y.;
Maehira, K.; Nakase, J.; Sonoda, N. Tetrahedron Lett. 2005, 46,
7415.
(5) (a) Tang, R.-Y.; Zhong, P.; Lin, Q.-I. Synthesis 2007, 85.
(b) Taniguchi, N. J. Org. Chem. 2007, 72, 1241.
(6) Bodanszky, M. Principles of Peptide Synthesis 1984, 307.
(7) Shah, S. T. A.; Khan, K. M.; Fecker, M.; Voelter, W. Tetrahedron
Lett. 2003, 44, 6789.
(8) (a) Kirihara, M.; Asai, Y.; Ogawa, S.; Noguchi, T.; Hatano, A.;
Hirai, Y. Synthesis 2007, 3286. (b) Golchoubian, H.; Hosseinpoor,
F. Catal. Commun. 2007, 8, 697. (c) Silveira, C. C.; Mendes, S. R.
Tetrahedron Lett. 2007, 48, 7469. (d) Lenardao, E. J.; Lara, R. G.;
Silva, M. S.; Jacob, R. G.; Perin, G. Tetrahedron Lett. 2007, 48,
7668. (e) Ali, M. H.; McDermott, M. Tetrahedron Lett. 2002, 43,
6271. (f) Akdag, A.; Webb, T.; Worley, S. D. Tetrahedron Lett.
2006, 47, 3509. (g) Iranpoor, N.; Zeynizadeh, B. Synthesis 1999,
49. (h) Tajbakhsh, M.; Lakouraj, M. M.; Mahalli, M. S. Monatsh.
Chem. 2008, 139, 1453. (i) Thurow, S.; Pereira, V. A.; Martinez, D.
M.; Alves, D.; Perin, G.; Jacob, R. G.; Lenardão, E. J. Tetrahedron
Lett. 2011, 52, 640.
Ar
Ar
N
N
N
N
L2Ni
L2Ni
S K
S
O
O
X
OH
– KX
N
N
OH
S
N
N
Ar
Ar
O
S
O
N
N
HO
O
DMF–H2O, EG
NiCl2•6H2O
ArS-SAr
ArS
KOH,130 °C
Scheme 1 Proposed mechanism
In conclusion, we have developed a novel, simple and ef-
ficient method for the synthesis of diaryl/dialkyl disulfides,
that relies on a nickel-catalyzed coupling reaction.19 The
important feature of this method is the use of potassium 5-
methyl-1,3,4-oxadiazole-2-thiolate salt as the sulfurating
reagent, which is a new, inexpensive, and stable solid and
free of foul-smelling thiols. In this work NiCl2·6H2O (10
mol%) was used as an inexpensive, safe, readily available,
and more efficient catalyst. Therefore, this strategy pro-
vides a new method for the direct synthesis of symmetrical
diaryl and dialkyl disulfides from aryl/alkyl halides, which
is more economical and general than previous methods.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 911–914