Organometallics
Communication
spectra were inconclusive.22 Importantly, the material was itself
catalytically inactive, as was ruthenium powder, indicating the
former to be a catalytic dead end and suggesting that the active
catalyst is homogeneous.
The production of both alkanes and truncated alkanes in the
present system is most simply explained by the intermediacy of
a metalloglycolate species (Scheme 3), which could undergo
Organic Transformations: A Guide to Functional Group Preparations;
VCH: New York, 1993; pp 155−156.
(4) (a) Deng, W.; Tan, X.; Fang, W.; Zhang, Q.; Wang, Y. Catal. Lett.
2009, 133, 167. (b) Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.;
Kou, Y. J. Am. Chem. Soc. 2006, 128, 8714−8715.
(5) (a) Taher, D.; Thibault, M. E.; Di Mondo, D.; Jennings, M.;
Schlaf, M. Chem. Eur. J. 2009, 15, 10132−10143. (b) Thibault, M. E.;
DiMondo, D.; Jennings, M.; Abdelnur, P. V.; Eberlin, M. N.; Schlaf, M.
Green Chem. 2011, 13, 357−366.
(6) (a) Ghosh, P.; Fagan, P. J.; Marshall, W. J.; Hauptman, E.;
Bullock, R. M. Inorg. Chem. 2009, 48, 6490. (b) Schlaf, M.; Ghosh, P.;
Fagan, P. J.; Hauptman, E.; Bullock, R. M. Adv. Synth. Catal. 2009,
351, 789. (c) Schlaf, M.; Ghosh, P.; Fagan, P. J.; Hauptmann, E.;
Bullock, R. M. Angew. Chem., Int. Ed. 2001, 40, 3887.
(7) (a) Block, E. In Organic Reactions; Dauben, W. G., Ed.; Wiley:
New York, 1984; Vol. 30. (b) Jang, D. O.; Joo, Y. H. Synth. Commun.
1998, 28, 871.
Scheme 3. Possible Catalytic Pathway for Hydrogenolysis
and Hydrocracking
(8) Arceo, E.; Marsden, P.; Bergman, R. G.; Ellman, J. A. Chem.
Commun. 2009, 23, 3357−3359.
(9) Cook, G. K.; Andrews, M. A. J. Am. Chem. Soc. 1996, 118, 9448.
(10) (a) Gable, K. P.; Phan, T. N. J. Am. Chem. Soc. 1994, 116, 833.
(b) Gable, K. P. Organometallics 1994, 13, 2486. (c) Gable, K. P.;
Juliette, J. J. J. Am. Chem. Soc. 1996, 118, 2625. (d) Gable, K. P.;
Zhuravlev, F. A. J. Am. Chem. Soc. 2002, 124, 3970. (e) Gable, K. P.;
AbuBaker, A.; Zientara, K.; Wainwright, A. M. Organometallics 1999,
18, 173. (f) Gable, K. P.; Ross, B. ACS Symp. Ser. 2006, 921
(Feedstocks for the Future), 143.
(11) Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. Inorg.
Chem. 2009, 48, 9998.
(12) Yamane, Y.; Liu, X.; Hamasaki, A.; Ishida, T.; Haruta, M.;
Tokunaga, M. Org. Lett. 2009, 5162.
(13) (a) Vkuturi, S.; Chapman, G.; Ahmad, I.; Nicholas, K. M. Inorg.
Chem. 2010, 49, 4744. (b) Ahmad, I.; Chapman, G.; Nicholas, K. M.
Organometallics 2011, 30, 2810−2818.
(14) Arceo, E.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2010,
132, 11408.
alternative redox fragmentations either to olefin10 (which is
subsequently hydrogenated) or to reduced-carbon aldehydes23
(which also are then reduced24).25 Both mono- and bimetallic
(bridged) glycolate species (A and B) can be envisioned, the
latter being precedented by [Cp*Ru(L)(μ-OR)2]2.26
In conclusion, we have disclosed here a new system for glycol
and epoxide conversion to alkanes which employs H2 as
reductant and [Cp*Ru(CO)2]2 as a precatalyst. A rare
hydrocracking reaction is also promoted by 1. Future
investigations will focus on elucidating the important catalytic
species and mechanisms of these reactions and their application
to biomass-derived polyols.
(15) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev.
2004, 248, 2201−2237.
(16) King, R. B.; Iqbal, M. Z.; King, A. D. J. Organomet. Chem. 1979,
171, 53.
(17) GC analyses of aliquots provide yield of ethyl benzene/toluene,
time: 20/10%, 8 h; 26/16%, 23 h; 40/31%, 30 h.
ASSOCIATED CONTENT
■
(18) The potential cracking product, pentane, would not be
detectable because of its short GC retention time.
(19) Andrews, M. A.; Klaeren, S. A. J. Am. Chem. Soc. 1989, 111,
S
* Supporting Information
Text and figures giving experimental procedures and
representative gas chromatograms. This material is available
4131−4133.
(20) Cheng, T. -Y.; Bullock, R. M. Organometallics 2002, 21, 2325.
(21) (b) Marsh, R. E. Organometallics 1989, 8, 1584. (a) Suzuki, H.;
Omori, H.; Lee, D. H.; Yoshida, Y.; Moro-oka, Y. O. Organometallics
1988, 7, 2243−2245.
AUTHOR INFORMATION
■
Corresponding Author
(22) The black precipitate did not melt below 120 °C and almost
entirely dissolved in DMSO (10 mg/mL). The decomposition
temperature of [Cp*Ru(CO)2]2 is 297 °C;16 therefore, the black
material does not likely result from simple thermal decomposition of 1.
Its IR spectrum (KBr) showed no significant peaks in the 1800−2100
*Tel: 337 482 5677. Fax: +1 337 482 5676. E-mail: rss1805@
ACKNOWLEDGMENTS
■
Financial support from the Louisiana Board of Regents (R.S.S.)
and from the Oklahoma Bioenergy Center (K.M.N.) is greatly
appreciated.
1
cm−1 M−CO region; its H NMR spectrum showed broad peaks at
1.091, 4.96, 2.5, 2.96, 5.9, and 7.4 ppm. When styrenediol (20 mg) and
15 mg of the black material were subjected to the usual reaction
conditions (24 h, 4 atm of H2), only the unreacted diol was detected.
The same result was obtained when the diol (20 mg) and Ru powder
(1.4 mg) were heated together under hydrogen.
REFERENCES
■
(1) Litchenthaler, F. W.; Mondal, S. Pure Appl. Chem. 1997, 69, 1853.
(2) (a) Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Angew. Chem.,
Int. Ed. 2007, 46, 7164−7183. (b) Huber, G. W.; Iborra, S.; Corma, A.
Chem. Rev. 2006, 106, 4044. (c) Corma, A.; Iborra, S.; Velty, A. Chem.
Rev. 2007, 107, 2411.
(23) Pt−glycolateoxidative fragmentation: Andrews, M. A.; Gould,
G. L. Organometallics 1991, 10, 387−389.
(24) (a) Strohmeier, W.; Weigelt, L. J. Organomet. Chem. 1978, 145,
189−94. (b) Sanchez-Delgado, R. A.; De Ochoa, O. L. J. Mol. Catal.
1979, 6, 303−5. (c) Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc.
1981, 103, 7536−42. (d) Clarke, M. L.; Diaz-Valenzuela, M. B.;
Slawin, A. M. Z. Organometallics 2007, 26, 16−19.
(3) (a) Sharpless, K. B.; Umbreit, M. A.; Nieh, M. T.; Flood, T. C. J.
Am. Chem. Soc. 1972, 94, 6538. (b) Corey, E. J.; Hopkins, P. B.
Tetrahedron Lett. 1982, 23, 1979. (c) Larock, R. C. Comprehensive
517
dx.doi.org/10.1021/om200447z | Organometallics 2012, 31, 515−518