www.eurjic.org
FULL PAPER
Ni(Ac)
a Ni(Ac)
tion B).
2
·4H
2
O (0.665 g) was dissolved in ethanol (50 mL) to form
Beijing Higher Education Young Elite Teacher Project (grant
number YETP0484) and the State Key Project of Fundamental
Research for Nanoscience and Nanotechnology (grant number
–1
2
2
·4H O (13.3 mgmL ) solution (a transparent green solu-
2
011CB932402).
We will use Pd25Ni75 as the example. TBAB (0.1 mmol) was placed
in a 50-mL autoclave and solution A (1 mL) and solution B (2 mL)
were injected into the autoclave, and stirred to dissolve the TBAB.
Later oleylamine (10 mL) was added into the autoclave while stir-
ring. The autoclave was then sealed and kept at 200 °C for 24 h in
an oven. The autoclave was cooled down naturally to room tem-
perature after the reaction. The product was washed with the mix-
ture of ethanol and cyclohexane and separated by centrifugation at
[1] a) J. F. Fei, L. Gao, J. Zhao, C. L. Du, J. B. Li, Small 2013, 9,
1
021–1024; b) S. Mann, H. Clfen, Angew. Chem. Int. Ed. 2003,
42, 2350–2365; Angew. Chem. 2003, 115, 2452.
[2] a) J. N. Hohman, M. Kim, G. A. Wadsworth, H. R. Bednar, J.
Jiang, M. A. LeThai, P. S. Weiss, Nano Lett. 2011, 11, 5104–
5
110; b) M. Grzelczak, J. Vermant, E. M. Furst, L. M. Liz-
10000 rpm for 25 min several times. When collecting the product,
Marzán, ACS Nano 2010, 4, 3591–3605; c) B. H. Sohn, J. M.
Choi, S. I. Yoo, S. H. Yun, W. C. Zin, J. C. Jung, M. Kanehara,
T. Hirata, T. Teranishi, J. Am. Chem. Soc. Commun. 2003, 125,
a little bit was redispersed in cyclohexane for TEM analysis and
the rest was dried at 60 °C overnight. For the synthesis of Pd–Ni
bimetals with various compositions, such as Pd40Ni60, Pd50Ni50 and
Pd75Ni25, we changed the dosage of solution B and additional eth-
anol was added to maintain the volume ratio of toluene and eth-
anol as 1:2. Other steps of the synthetic procedures were the same
6
368–6369; d) J. Y. Ku, D. M. Aruguete, A. P. Alivisatos, P. L.
Geissler, J. Am. Chem. Soc. 2011, 133, 838–848.
3] a) Y. Zhao, K. Thorkelsson, A. J. Mastroianni, T. Schilling,
B. J. Rancatore, T. Xu, J. M. Luther, Y. Wu, D. Poulsen, J. M. J.
Fréchet, Nat. Mater. 2009, 8, 979–985; b) Y. Tidhar, H. Weiss-
man, S. G. Wolf, A. Gulino, B. Rybtchinski, Chem. Eur. J.
2011, 17, 6068–6075.
[
as those for the synthesis of Pd25Ni75
.
Characterization: The powder X-ray diffraction (XRD) was ac-
complished with a D8 Focus diffractometer (Bruker) with a Cu-
K radiation source. A JTEM-1230 (Japan) transmission electron
α
[
[
[
4] J. P. Ge, Y. X. Hu, M. Biasini, L. Dong, J. H. Guo, W. P. Beyer-
mann, Y. D. Yin, Chem. Eur. J. 2007, 13, 7153–7161.
5] Y. Wu, S. F. Cai, D. S. Wang, W. He, Y. D. Li, J. Am. Chem.
Soc. 2012, 134, 8975–8981.
6] a) F. Bai, D. S. Wang, Z. Y. Huo, W. Chen, L. P. Liu, X. Liang,
C. Chen, X. Wang, Q. Peng, Y. D. Li, Angew. Chem. Int. Ed.
microscope (TEM) and S-4700 (Japan) scanning electron micro-
scope (SEM) were employed to obtain the morphology and size of
the as-synthesized samples. HRTEM was measured with an FEI
Tecnai G2 F20 S-Twin high-resolution transmission electron micro-
scope at 200 kV. Energy dispersive X-ray (EDX) analysis was car-
ried out with an FEI scanning electron microscope (JSM-6700F).
The Fourier transform infrared (FTIR) spectra were measured with
a Nicolet6700 spectrometer with a deuterated triglyceride sulfate
2007, 46, 6650–6653; Angew. Chem. 2007, 119, 6770; b) H.
Yang, X. L. Wu, M. H. Cao, Y. G. Guo, J. Phys. Chem. C 2009,
113, 3345–3351; c) S. H. Sun, E. E. Fullerton, D. Weller, C. B.
Murray, IEEE Transactions on Magnetics 2001, 37, 1239–1243.
7] a) D. S. Wang, Y. D. Li, Adv. Mater. 2011, 23, 1044–1060; b)
Y. Wu, D. S. Wang, P. Zhao, Z. Q. Niu, Q. Peng, Y. D. Li, In-
org. Chem. 2011, 50, 2046–2048.
[
[
(
DTGS) detector at room temperature. 32 scans were collected for
–1
each spectrum with a resolution of 4 cm . Vibration sample mag-
netometry (VSM) was used to examine the magnetic properties of
the obtained Pd–Ni nanocrystals with Lakeshore 7410. The chemi-
cal composition was confirmed by X-ray photoelectron spec-
8] a) J. Guevaraa, A. M. Llois, F. Aguilera-Granjad, J. M. Monte-
jano-Carrizales, Phys. B 2004, 354, 300–302; b) D. L. Wang,
H. L. Xin, H. S. Wang, Y. C. Yu, E. Rus, D. A. Mulle, F. J.
DiSalvo, H. D. Abruna, Chem. Mater. 2012, 24, 2274–2281; c)
Z. Y. Zhang, T. M. Nenoff, K. Leung, S. R. Ferreira, J. Y. Hu-
ang, D. T. Berry, P. P. Provencio, R. Stumpf, J. Phys. Chem. C
2010, 114, 14309–14318.
troscopy (XPS, Thermo Scientific ESCALAB 250 Xi) using Al-K
α
radiation. The surface areas (BET) were measured with a JW-RB24
static nitrogen adsorption instrument.
[
9] a) M. Li, H. Schnablegger, S. Mann, Nature 1999, 402, 393–
Catalysis for the Hydrogenation of Acetophenone: The catalytic re-
action was carried out with a stainless steel reactor (50 mL) at
395; b) N. Shukla, C. Liu, P. M. Jones, D. Weller, J. Magn.
Magn. Mater. 2003, 266, 178–184.
80 °C for 4 h. The catalyst (10 mg), absolute ethanol (10 mL) and
[
10] a) S. H. Sun, Adv. Mater. 2006, 18, 393–403; b) M. Raula,
Md. H. Rashid, S. Lai, M. Roy, T. K. Mandal, ACS Appl. Ma-
ter. Interfaces 2012, 4, 878–889.
acetophenone (0.5 mL) were all added into the reactor. The batch
reactor was then purged with hydrogen to exhaust air several times,
pressurized up to 15 bars, heated to the set temperature and kept
at about 400 rpm while stirring. After the reaction time, the auto-
clave was cooled to room temperature, the liquid product was col-
lected for analysis by gas chromatography with a DongXi
GC4000A apparatus with a FID director and an SE-54 capillary
column.
[11] a) R. A. Campbell, S. R. W. Parker, J. P. R. Day, C. D. Bain,
Langmuir 2004, 20, 8740–8753; b) M. Akçay, J. Colloid Inter-
face Sci. 2006, 296, 16–21.
[
12] a) L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma,
D. An, J. Lin, Y. J. Xu, W. P. Xu, W. B. Wu, S. H. Yu, L. P.
Wen, Adv. Funct. Mater. 2013, 23, 5930–5940; b) M. R. Gao,
S. R. Zhang, Y. F. Xu, Y. R. Zheng, J. Jiang, S. H. Yu, Adv.
Funct. Mater. 2013, 23, 1–8; c) J. S. Chen, T. Zhu, C. M. Li,
X. W. Lou, Angew. Chem. Int. Ed. 2011, 50, 650–653; Angew.
Chem. 2011, 123, 676.
Supporting Information (see footnote on the first page of this arti-
cle): HRTEM, SEM-EDX spectra and accurate compositions of
Pd–Ni in the investigated samples, TEM images of Pd–Ni nanopar-
ticles in the absence of TBAB, FTIR characterization of pure
TBAB and XPS curve-fitting of the Ni 2p and Pd 3d photoelectron
peaks in Pd40Ni60 and Pd75Ni25 samples are shown in the Support-
ing Information. This material is available free of charge via the
Internet at http://pubs.acs.org.
[
13] V. Salgueirino-Maceira, L. M. Liz-Marzán, M. Farle, Lang-
muir 2004, 20, 6946–6950.
[
14] a) L. Sciortino, F. Giannici, A. Martorana, A. M. Ruggirello,
V. T. Liveri, G. Portale, M. P. Casaletto, A. Longo, J. Phys.
Chem. C 2011, 115, 6360–6366; b) E. L. Ratcliff, J. Meyer,
K. X. Steirer, A. Garcia, J. J. Berry, D. S. Ginley, D. C. Olson,
A. Kahn, N. R. Armstrong, Chem. Mater. 2011, 23, 4988–5000;
c) K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung,
H. Y. Ha, S. A. Hong, H. Kim, A. Wieckowski, J. Phys. Chem.
B 2002, 106, 1869–1877.
Acknowledgments
This work was financially supported by National Natural
Science Foundation of China (NSFC) (grant number 21121064),
[15] a) G. B. Hoflund, H. A. E. Hagelin, J. F. Weaver, G. N. Salaita,
Appl. Surf. Sci. 2003, 205, 102–112; b) M. Brun, A. Berthet,
Eur. J. Inorg. Chem. 2014, 4144–4150
4149
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim