402
Russ.Chem.Bull., Int.Ed., Vol. 63, No. 2, February, 2014
Belyaeva et al.
W/mol ((mole of Pd) min)–1
120
6. D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem., Int. Ed.,
2009, 48, 7502.
7. M. Sabo, A. Henschel, H. Frode, E. Klemm, S. Kaskel,
J. Mater. Chem., 2007, 17, 3827.
8. H.ꢀL. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu,
J. Am. Chem. Soc., 2009, 131, 11302.
9. H.ꢀL. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, J. Am.
Chem. Soc., 2011, 133, 1304.
10. S. Hermes, F. Schröder, S. Amirjalayer, R. Schmid, R. A.
Fischer, J. Mater. Chem., 2006, 16, 2464.
11. F. Schröder, D. Esken, M. Cokoja, M. W. E. van den Berg,
O. I. Lebedev, G. Van Tendeloo, B. Walaszek, G. Buntꢀ
kowsky, H.ꢀH. Limbach, B. Chaudret, R. A. Fischer, J. Am.
Chem. Soc, 2008, 130, 6119.
12. K. Park, S. B. Choi, H. J. Nam, D.ꢀY. Jung, H. C. Ahn,
K. Choi, H. Furukawa, J. Kim, Chem. Commun., 2010,
46, 3086.
13. H.ꢀL. Jiang, Q. Xu, J. Mater. Chem., 2011, 21, 13705.
14. X. Gu, H.ꢀL. Jiang, T. Akita, Q. Xu, J. Am. Chem. Soc.,
2011, 133, 11822.
W01
W02
96.3
100
80
60
40
20
75.9
45.6
45.0
42.9
38.6
35.8
29.8
22.7
18.8
1
2
3
4
5
Cycles
Fig. 6. Stability of palladiumꢀcontaining sample MOFꢀ5 in the
partial hydrogenation of phenylacetylene; W01 and W02 are the
initial specific rates for the hydrogenation of phenylacetylene
and styrene, respectively.
15. A. Bayrakçeken, B. Cangül, L. C. Zhang, М. Aindow,
С. Erkey, Int. J. Hydrogen Energy, 2010, 35, 11669.
16. B. Cangül, L. C. Zhang, M. Aindow, C. Erkey, J. Supercrit.
Fluids, 2009, 50, 82.
17. A. Bayrakçeken, A. Smirnova, U. Kitkamthorn, M. Aindow,
L. Turker, I. Eroglu, C. Erkey, Chem. Eng. Commun., 2009,
196, 194.
genation of phenylacetylene depend substantially on the
preparation method (fluid synthesis in supercritical CO2
and impregnation to incipient wetness) and on the nature
of the palladium precursor. A comparison of the catalytic
experimental data and results of physicochemical studies
suggested that small palladium nanoparticles (about
1—2 nm) are predominantly immobilized in pores of
the metalꢀorganic framework of composite material
1%Pd@MOFꢀ5 synthesized in supercritical CO2. This
position of active sites favors the suppression of the undeꢀ
sirable styrene conversion to ethylbenzene. The highest
selectivity for styrene (~95—97% at a phenylacetylene conꢀ
version of 95%) is observed in the presence of palaldiumꢀ
containing materials 1%Pd@MOFꢀ5 and 5%Pd@MOFꢀ5
prepared by the impregnation to incipient wetness method
from palladium acetate. The development of the composꢀ
ite materials, being palladium nanoparticles immobilized
in the matrix of the metalꢀorganic framework MOFꢀ5,
makes it possible to control the catalytic properties of the
Pd@MOFꢀ5 system in the partial hydrogenation of acetylꢀ
ene compounds.
18. Y. Zhang, B. Cangul, Y. Garrabos, C. Erkey, J. Supercrit.
Fluids, 2008, 44, 71.
19. C. Erkey, J. Supercrit. Fluids, 2009, 47, 517.
20. A. Bayrakçeken, A. Smirnova, U. Kitkamthorn, M. Aindow,
L. Turker, I. Eroglu, C. Erkey, J. Power Sources, 2008, 179, 532.
21. A. Bayrakçeken, A. Smirnova, U. Kitkamthorn, C. Erkey,
Scripta Mater., 2007, 56, 101.
22. Y. Zhang, C. Erkey, J. Supercrit. Fluids, 2006, 38, 252.
23. R. Jiang, Y. Zhang, S. Swier, Electrochem. Solid State Lett.,
2005, 8, 611.
24. Y. Zhang, D. Kang, C. Saquing, M. Aindow, C. Erkey, Ind.
Eng. Chem. Res., 2005, 44, 4161.
25. S. Solodovnikov, A. Vasil´kov, A. Olenin, E. Titova, V. Serꢀ
geev, Dokl. Chem. (Engl. Transl.), 1990, 310 [Dokl. Akad.
Nauk SSSR, 1990, 310, 912].
26. A. Vasil´kov, A. Olenin, E. Titova, V. Sergeev, J. Colloid
Interface Sci., 1995, 169, 356.
27. Y. Zhao, J. Zhang, J. Song, J. Li, J. Liu, T. Wu, P. Zhang,
B. Han, Green Chem., 2011, 13, 2078.
28. T. Wu, P. Zhang, J. Ma, H. Fan, W. Wang, T. Jiang, B. Han,
Chin, J. Catal., 2013, 34, 167.
29. E. J. Beckman, J. Supercrit. Fluids, 2004, 28, 121.
30. A. Molnar, A. Sarkany, M. Varga, J. Mol. Catal. A, 2001,
173, 185.
This work was financially supported by the Russian
Russian Foundation for Basic Research (Project No. 12ꢀ
03ꢀ01097ꢀa).
References
31. M. L. Derrien, Stud. Surf. Sci. Catal., 1986, 27, 613.
32. H. Arnold, F. Dobert, J. Gaube, in Handbook of Heteroꢀ
geneous Catalysis, Eds G. Ertl, H. Knözinger, J. Weitkamp,
VCH, Weinheim, 1997, p. 2165.
1. V. I. Parvulescu, C. Hardacre, Chem. Rev., 2007, 107, 2615.
2. J. SilvestreꢀAlbero, F. RodriguezꢀReinoso, A. Sepulvedaꢀ
Escribano, J. Catal., 2002, 210, 127.
3. S. R. de Miguel, M. C. RomanꢀMartinez, D. CazorlaꢀAmoros,
E. L. Jablonski, O. A. Scelza, Catal. Today, 2001, 66, 289.
4. S. Turner, O. I. Lebedev, F. Schrцder, D. Esken, R. A.
Fischer, G. Van Tendeloo, Chem. Mater., 2008, 20, 5622.
5. M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van
Tendeloo, R. A. Fischer, Eur. J. Inorg. Chem., 2010, 3701.
33. H. D. Neubauer, A. Heilmann, J. Kötter, R. Schubert,
Tagungsbericht, 1993, 9305, 67.
34. S. DominguezꢀDominguez, A. BerenguerꢀMurcia, A. Linaꢀ
resꢀSolano, D. CazorlaꢀAmoros, J. Catal., 2008, 257, 87.
35. T. Vergunst, F. Kapteijn, J. A. Moulijn, Ind. Eng. Chem.
Res., 2001, 40, 2801.