Racemization and Resolution of Benzylic Amines
FULL PAPER
easily obtain H
2
pressures below 0.1 MPa, 5% H
2
in N
2
was used as reac-
Chem. Rev. 2003, 103, 3247–3261; c) N. J. Turner, Curr. Opin. Chem.
Biol. 2004, 8, 114–119; d) J. H. Choi, Y. H. Kim, S. H. Nam, S. T.
Shin, M. J. Kim, J. Park, Angew. Chem. 2002, 114, 2479–2482;
Angew. Chem. Int. Ed. 2002, 41, 2373–2376; e) M.-J. Kim, Y. Ahn, J.
Park, Curr. Opin. Biotechnol. 2002, 13, 578–587; f) S. Wuyts, D. E.
De Vos, F. Verpoort, D. Depla, R. De Gryse, P. A. Jacobs, J. Catal.
tive gas. For the standard racemization 0.33 mmol of (S)-1-phenylethyla-
mine, 4 mL of toluene, and 40 mg of catalyst were used.
Dynamic kinetic resolution: Reactions were performed under similar
conditions with 0.33 mmol of racemic 1-phenylethylamine, 4 mL toluene,
1
00 mg of immobilized Candida Antarctica lipase B (Novozyme 435) as
2
003, 219, 417–424; g) S. Wuyts, K. De Temmerman, D. E. De Vos,
resolution catalyst, 40 mg of racemization catalyst, and 0.35 mmol of acy-
lating agent. At the end of the reaction the autoclave was cooled to room
temperature, the catalyst was separated by centrifugation and a sample
was taken for further analysis.
P. A. Jacobs, Chem. Commun. 2003, 1928–1929; h) K. Yamaguchi,
T. Koike, M. Kotani, M. Matsushita, S, Shinachi, N. Mizuno, Chem.
Eur. J. 2005, 11, 6574–6582; i) D. Klomp, T. Maschmeyer, U. Hane-
feld, J. A. Peters, Chem. Eur. J. 2004, 10, 2088–2093; j) D. Klomp,
K. Djanashvili, N. C. Svennum, N. Chantapariyavat, C. S. Wong, F.
Vilela, T. Maschmeyer, J. A. Peters, U. Hanefeld, Org. Biomol.
Chem. 2005, 3, 483–489; k) L. Veum, L. T. Kanerva, P. J. Halling, T.
Mashmeyer, U. Hanefeld, Adv. Synth. Catal. 2005, 347, 1015–1021.
5] O. Pamis, A. H. Ell, J. S. M. Samec, N. Hermanns, J. E. Bäckvall,
Tetrahedron Lett. 2002, 43, 4699–4702.
Instrumentation: XRD measurements were made on a Stoe StudiP dif-
fractometer with CuKa1 radiation (l=1.54 ). For all catalysts, the XRD
pattern was the same as that of the pure supports; in the case of BaSO
traces of Ba(OH) ·8H O were also observed. No traces of PdO or PdCl
were detected. HRTEM and EDX measurements were respectively per-
formed with a JEOL 4000EX and a Philips CM20 operated at 400 kV.
The EDX measurement confirmed for all samples that Pd catalysts did
not contain any traces of Cl ions. Pd particle size was measured by aver-
aging over 100 individual particles. ICP measurements were made on a
Jobin Yvon Ultima instrument. The metal loadings found for Pd/BaSO
4
2
2
2
[
ꢀ
[6] J. Paetzold, J. E. Bäckvall, J. Am. Chem. Soc. 2005, 127, 17620–
7621.
7] a) F. Funke, S. Liang, A. Kramer, R. Stürmer, A. Hçhn, US
576795, 2003; [Chem. Abs. 2003, 137, 48866]; b) H. Riechers, J.
Simon, A. Hçhn, A. Kramer, F. Funke, W. Siegel, C. Nübling, US
160178, 2000, ; [Chem. Abstr. 2000, 132, 308056].
1
[
4
,
6
Pd/SrCO , and Pd/BaCO were 4.7, 5, and 5 wt%, respectively. All cata-
3
3
lysts are denoted as 5% Pd/support. Yields and enantiomeric purities of
substrate and reaction products were determined by GC (HP 6890) on a
CP-CHIRASIL-DEX CB chiral column (25 m) with FID detector and
tetradecane as internal standard. The temperature program was as fol-
lows: 25 min at 708C, heating at 158Cmin to 1508C, and finally 10 min
at 1508C. Under these conditions, typical retention times are: ethylben-
zene, 2.07 min; (R)-1-phenylethylamine, 13.35 min; (S)-1-phenylethyla-
mine, 14.3 min; (S)-N-1-phenylethyl acetamide, 30.5 min; (R)-N-1-phe-
nylethyl acetamide, 30.9 min. Ethylbenzene and the secondary amines
were identified by using a GC-MS Agilent 6890-N with an Agilent 5973-
MSD on a silica column HP-5MS (30 m). MS data for bis(1-phenethyl)a-
mine (4): m/z (%): 225 (1), 210 (43), 120 (8), 106 (75), 105 (100), 79 (16),
6
[
[
8] M. T. Reetz, K. Schimossek, Chimia 1996, 50, 668–669.
9] Y. K. Choi, M. J. Kim, Y. Ahn, M.-J. Kim, Org. Lett. 2001, 3, 4099–
4101.
10] S. I. Murahashi, N. Yoshimura, T. Tsumiyama, T. Kojima, J. Am.
Chem. Soc. 1983, 105, 5002–5011.
ꢀ
1
[
[
11] a) G. C. Bond, A. F. Rawle, J. Mol. Catal. B J. Mol. Catal. A 1996,
1
09, 261–271; b) S. S. Nikam, B. E. Komberg, D. R. Johnson, A. M.
Doherty, Tetrahedron Lett. 1995, 36, 197–200; c) S. Bailey, F. King
in Fine Chemicals through Heterogeneous Catalysis (Eds.: R. A.
Sheldon, H. van Bekkum), Wiley-VCH, 2001, pp. 351–362.
[
[
[
12] B. Tçrçk, G. K. Surya Prakash, Adv. Synth. Catal. 2003, 345, 165–
7
7 (28), 51 (6).
1
68.
13] A. Parvulescu, D. De Vos, P. Jacobs, Chem. Commun. 2005, 42,
307–5309.
CO chemisorption measurements: CO chemisorption measurements
were made using an Omnistar TM mass spectrometer coupled to a Pfeiff-
er Vacuum pump and an oven with automatic temperature control. The
5
14] a) M. Kanai, K. Ueda, M. Yasumoto, Y. Kuriyama, K. Inomiya, T.
ꢀ
1
pretreatment procedure comprised heating in 10 mLmin
H
2
flow at
Ootsuka, Y. Katsuhara, K. Higashiyama, A. Ishii, J. Fluorine Chem.
ꢀ
1
1
08Cmin up to 708C, 1 h under flowing H at 708C, cooling to 258C
2
2
005, 126, 377–383; b) M. Kanai, M. Yasumoto, Y. Kuriyama, K. In-
omiya, Y. Katsuhara, K. Higashiyama, A. Ishii, Org. Lett. 2003, 5,
007–1010.
ꢀ
1
under He flow (10 mLmin ), and 30 min at 258C. The measurements
were made at room temperature by giving 5mL pulses of CO at regular
time intervals.
1
[
[
15] a) H. Lindlar, Helv. Chim. Acta 1952, 35, 446; b) J. G. Ulan, E. Kuo,
W. F. Maier, R. S. Rai, G. Thomas, J. Org. Chem. 1987, 52, 3126–
3
132.
16] N. W. J. T. Heinsman, C. G. P. H. Schroꢁn, A. van der Padt, M. C. R.
Acknowledgements
Franssen, R. M. Boom, K. Van’t Riet, Tetrahedron: Asymmetry
2
003, 14, 2699–2704.
We are grateful to the Bilateral program Flanders-Romania BIL 04/42,
to the IAP program Supramolecular Chemistry and Catalysis of the Bel-
gian Federal Government, to F.W.O. Vlaanderen for a grant, and to Cost
action D24.
[
17] J. L.L. Rakels, A. J.J. Straathof, J. J. Heijnen, Enzyme Microb. Tech-
nol. 1997, 21, 559–571.
18] M. Kitamura, M. Tokunaga, R. Noyori, Tetrahedron 1993, 49, 1853–
[
1
860.
[
[
19] U. Hanefeld, Org. Biomol. Chem. 2003, 1, 2405–2415.
20] a) R. Mozingo, Organic Syntheses, Coll. Vol. 3, 1946, p. 685; b) W. S.
Johnson, E. R. Rogier, J. Szmuszkovicz, H. I. Hadler, J. Ackerman,
B. K. Bhattacharyya, B. M. Bloom, L. Stalmann, R. A. Clement, B.
Bannister, H. Wynberg, J. Am. Chem. Soc. 1956, 78, 6280.
[
[
1] M. Breuer, K. Dietrich, T. Habicher, B. Hauer, M. Keßeler, R.
Stürmer, T. Zelinski, Angew. Chem. 2004, 116, 806–843; Angew.
Chem. Int. Ed. 2004, 43, 788–824.
2] K. Faber, Biotransformations in Organic Chemistry, 3rd ed., Spring-
er, Heidelberg, 1997.
[
[
3] F. van Rantwijk, R. A. Sheldon, Tetrahedron 2004, 60, 501–519.
4] a) B. A. Persson, A. L. E. Larsson, M. Le Ray, J. E. Bäckvall, J. Am.
Chem. Soc. 1999, 121, 1645–1650; b) O. Pamis, J. E. Bäckvall,
Received: June 23, 2006
Published online: December 7, 2006
Chem. Eur. J. 2007, 13, 2034 – 2043
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2043