Page 9 of 11
Journal of the American Chemical Society
Hu, W.; Zhao, H.; Tang, Z., Metal–organic frameworks as
selectivity regulators for hydrogenation reactions. Nature 2016,
Microporous Metal–Organic Frameworks to Hierarchical Micro-
and Mesoporous MOFs. Angew. Chem. Int. Ed. 2015, 54 (45),
13273-13278.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
5
39 (7627), 76-80.
5
3. Xiao, D. J.; Bloch, E. D.; Mason, J. A.; Queen, W. L.;
68.
Feng, L.; Yuan, S.; Zhang, L.-L.; Tan, K.; Li, J.-L.;
Hudson, M. R.; Planas, N.; Borycz, J.; Dzubak, A. L.; Verma, P.;
Lee, K.; Bonino, F.; Crocellà, V.; Yano, J.; Bordiga, S.; Truhlar, D.
G.; Gagliardi, L.; Brown, C. M.; Long, J. R., Oxidation of ethane
Kirchon, A.; Liu, L.-M.; Zhang, P.; Han, Y.; Chabal, Y. J.; Zhou,
H.-C., Creating Hierarchical Pores by Controlled Linker
Thermolysis in Multivariate Metal–Organic Frameworks. J. Am.
Chem. Soc. 2018, 140 (6), 2363-2372.
to ethanol by N2O in
a metal–organic framework with
coordinatively unsaturated iron(II) sites. Nat. Chem. 2014, 6 (7),
590-595.
69.
Guillerm, V.; Xu, H.; Albalad, J.; Imaz, I.; Maspoch, D.,
Postsynthetic Selective Ligand Cleavage by Solid–Gas Phase
Ozonolysis Fuses Micropores into Mesopores in Metal–Organic
Frameworks. J. Am. Chem. Soc. 2018, 140 (44), 15022-15030.
5
4.
Drake, T. L.; So, M. C.; Stair, P. C.; Farha, O. K.; Hupp, J. T.;
Nguyen, S. T., Vanadium-Node-Functionalized UiO-66:
Nguyen, H. G. T.; Schweitzer, N. M.; Chang, C.-Y.;
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
A
70.
Horike, S.; Dincǎ, M.; Tamaki, K.; Long, J. R., Size-
Thermally Stable MOF-Supported Catalyst for the Gas-Phase
Oxidative Dehydrogenation of Cyclohexene. ACS Catal. 2014, 4
(8), 2496-2500.
Selective Lewis Acid Catalysis in a Microporous Metal-Organic
Framework with Exposed Mn2+ Coordination Sites. J. Am. Chem.
Soc. 2008, 130 (18), 5854-5855.
55.
Comito, R. J.; Fritzsching, K. J.; Sundell, B. J.; Schmidt-
71.
Vermoortele, F.; Vandichel, M.; Van de Voorde, B.;
Rohr, K.; Dincă, M., Single-Site Heterogeneous Catalysts for
Olefin Polymerization Enabled by Cation Exchange in a Metal-
Organic Framework. J. Am. Chem. Soc. 2016, 138 (32), 10232-
Ameloot, R.; Waroquier, M.; Van Speybroeck, V.; De Vos, D. E.,
Electronic Effects of Linker Substitution on Lewis Acid Catalysis
with Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2012, 51
(20), 4887-4890.
1
5
0237.
6.
Manna, K.; Ji, P.; Lin, Z.; Greene, F. X.; Urban, A.;
72.
Mondloch, J. E.; Katz, M. J.; Isley Iii, W. C.; Ghosh, P.;
Thacker, N. C.; Lin, W., Chemoselective single-site Earth-
abundant metal catalysts at metal–organic framework nodes. Nat.
Commun. 2016, 7 (1), 12610.
Liao, P.; Bury, W.; Wagner, G. W.; Hall, M. G.; DeCoste, J. B.;
Peterson, G. W.; Snurr, R. Q.; Cramer, C. J.; Hupp, J. T.; Farha, O.
K., Destruction of chemical warfare agents using metal–organic
frameworks. Nat. Mater. 2015, 14 (5), 512-516.
5
7.
Pan, Y.; Yuan, B.; Li, Y.; He, D., Multifunctional
catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl
ketone over palladium nanoparticles deposited on a metal–organic
framework. Chem. Commun. 2010, 46 (13), 2280-2282.
73.
Yang, D.; Ortuño, M. A.; Bernales, V.; Cramer, C. J.;
Gagliardi, L.; Gates, B. C., Structure and Dynamics of Zr6O8
Metal–Organic Framework Node Surfaces Probed with Ethanol
Dehydration as a Catalytic Test Reaction. J. Am. Chem. Soc. 2018,
140 (10), 3751-3759.
5
8.
Song, F.; Wang, C.; Lin, W., A chiral metal–organic
framework for sequential asymmetric catalysis. Chem. Commun.
2
5
011, 47 (29), 8256-8258.
9. Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De
74.
Ji, P.; Feng, X.; Oliveres, P.; Li, Z.; Murakami, A.; Wang,
C.; Lin, W., Strongly Lewis Acidic Metal–Organic Frameworks for
Continuous Flow Catalysis. J. Am. Chem. Soc. 2019, 141 (37),
14878-14888.
Vos, D., An amino-modified Zr-terephthalate metal–organic
framework as an acid–base catalyst for cross-aldol condensation.
Chem. Commun. 2011, 47 (5), 1521-1523.
75.
International Journal for Chemistry 2012, 66 (3), 125-129.
76. Feng, X.; Ji, P.; Li, Z.; Drake, T.; Oliveres, P.; Chen, E.
Copéret, C., Surface and Interfacial Chemistry. CHIMIA
6
0.
Park, J.; Li, J.-R.; Chen, Y.-P.; Yu, J.; Yakovenko, A. A.;
Wang, Z. U.; Sun, L.-B.; Balbuena, P. B.; Zhou, H.-C., A versatile
metal–organic framework for carbon dioxide capture and
cooperative catalysis. Chem. Commun. 2012, 48 (80), 9995-9997.
Y.; Song, Y.; Wang, C.; Lin, W., Aluminum Hydroxide Secondary
Building Units in a Metal–Organic Framework Support Earth-
Abundant Metal Catalysts for Broad-Scope Organic
Transformations. ACS Catal. 2019, 9 (4), 3327-3337.
6
1.
Pintado-Sierra, M.; Rasero-Almansa, A. M.; Corma, A.;
M.; Sánchez, F., Bifunctional iridium-(2-
Iglesias,
aminoterephthalate)–Zr-MOF chemoselective catalyst for the
synthesis of secondary amines by one-pot three-step cascade
reaction. J. Catal. 2013, 299, 137-145.
77.
Ji, P.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J.
H.; Lin, W., Tuning Lewis Acidity of Metal–Organic Frameworks
via Perfluorination of Bridging Ligands: Spectroscopic,
Theoretical, and Catalytic Studies. J. Am. Chem. Soc. 2018, 140
(33), 10553-10561.
62.
Jiang, Z.-R.; Wang, H.; Hu, Y.; Lu, J.; Jiang, H.-L., Polar
Group and Defect Engineering in a Metal–Organic Framework:
Synergistic Promotion of Carbon Dioxide Sorption and Conversion.
ChemSusChem 2015, 8 (5), 878-885.
78.
Sobańska, K.; Krasowska, A.; Mazur, T.; Podolska-
Serafin, K.; Pietrzyk, P.; Sojka, Z., Diagnostic Features of EPR
Spectra of Superoxide Intermediates on Catalytic Surfaces and
Molecular Interpretation of Their g and A Tensors. Top. Catal.
2015, 58 (12), 796-810.
6
3.
Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R.,
Multifunctional metal–organic framework catalysts: synergistic
catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46 (1), 126-
157.
79.
Ohkubo, K.; Menon, S. C.; Orita, A.; Otera, J.; Fukuzumi,
6
4.
Senkovska, I.; Hoffmann, F.; Fröba, M.; Getzschmann,
S., Quantitative Evaluation of Lewis Acidity of Metal Ions with
Different Ligands and Counterions in Relation to the Promoting
Effects of Lewis Acids on Electron Transfer Reduction of Oxygen.
J. Org. Chem. 2003, 68 (12), 4720-4726.
J.; Böhlmann, W.; Kaskel, S., New highly porous aluminium based
metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene
dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4 ′ -biphenyl
dicarboxylate). Microporous Mesoporous Mater. 2009, 122 (1),
80.
Jack, L.; Yellowlees, L. J.; Parsons, S., CCDC 660772:
9
3-98.
Experimental Crystal Structure Determination. Cambridge
Crystallographic Data Centre: 2008.
65.
Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-
Romo, F. J.; Furukawa, H.; Long, J. R.; Yaghi, O. M., Metal
Insertion in a Microporous Metal−Organic Framework Lined with
81.
Serrano-Ruiz, J. C.; Dumesic, J. A., Catalytic routes for
the conversion of biomass into liquid hydrocarbon transportation
fuels. Energy Environ. Sci. 2011, 4 (1), 83-99.
2
6
,2′-Bipyridine. J. Am. Chem. Soc. 2010, 132 (41), 14382-14384.
6. Tu, B.; Pang, Q.; Wu, D.; Song, Y.; Weng, L.; Li, Q.,
82.
García, V.; Päkkilä, J.; Ojamo, H.; Muurinen, E.; Keiski,
Ordered Vacancies and Their Chemistry in Metal–Organic
Frameworks. J. Am. Chem. Soc. 2014, 136 (41), 14465-14471.
R. L., Challenges in biobutanol production: How to improve the
efficiency? Renew. Sustain. Energy Rev. 2011, 15 (2), 964-980.
6
7.
Kim, Y.; Yang, T.; Yun, G.; Ghasemian, M. B.; Koo, J.;
83.
Gallezot, P., Conversion of biomass to selected chemical
Lee, E.; Cho, S. J.; Kim, K., Hydrolytic Transformation of
products. Chem. Soc. Rev. 2012, 41 (4), 1538-1558.
9
ACS Paragon Plus Environment