Inorganic Chemistry
Article
heterogeneous solvent-free catalyst toward both CO epox-
idation and Knoevenagel condensation reaction.
Porphyrin Catalysts for the Synthesis of Cyclic Carbonates from
2
Epoxides and CO : Structural Optimization and Mechanistic Study. J.
2
Am. Chem. Soc. 2014, 136, 15270−15279. (c) Bayardon, J.; Holz, J.;
Schaffner, B.; Andrushko, V.; Verevkin, S.; Preetz, A.; Borner, A.
̈ ̈
ASSOCIATED CONTENT
Supporting Information
■
Propylene Carbonate as a Solvent for Asymmetric Hydrogenations.
*
S
Angew. Chem., Int. Ed. 2007, 46, 5971−5974.
(
4) (a) Schaffner, B.; Schafner, F.; Verevkin, S. P.; Borner, A. Organic
̈ ̈ ̈
Carbonates as Solvents in Synthesis and Catalysis. Chem. Rev. 2010,
ard, L.; Auvergne, R.; Benazet,
110, 4554−4581. (b) Blain, M.; Jean-Ger
́
D.; Caillol, S.; Andrioletti, B. Rational Investigations in the Ring
Additional crystal structure figures, TGA, PXRD, catalytic
property tests, and proposed catalytic mechanism (PDF)
Opening of Cyclic Carbonates by Amines. Green Chem. 2014, 16,
4
(
286−4291.
5) (a) Freeman, F. Properties and Reactions of Ylidenemalononi-
triles. Chem. Rev. 1980, 80, 329−350. (b) List, B. Emil Knoevenagel and
CCDC 1849778 contains the supplementary crystallographic
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44 1223 336033.
the Roots of Aminocatalysis. Angew. Chem., Int. Ed. 2010, 49, 1730−
1
(
734.
6) (a) Wu, L.-L.; Wang, Z.; Zhao, S.-N.; Meng, X.; Song, X.-Z.; Feng,
J.; Song, S.-Y.; Zhang, H.-J. A Metal−Organic Framework/DNA
Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion
Detection. Chem. - Eur. J. 2016, 22, 477−480. (b) Song, X.-Z.; Song, S.-
Y.; Zhao, S.-N.; Hao, Z.-M.; Zhu, M.; Meng, X.; Wu, L.-L.; Zhang, H.-J.
Single-Crystal-to-Single-Crystal Transformation of a Europium(III)
Metal−Organic Framework Producing a Multi-responsive Lumines-
cent Sensor. Adv. Funct. Mater. 2014, 24, 4034−4041.
AUTHOR INFORMATION
■
*
(7) (a) Lan, G.-X.; Zhu, Y.-Y.; Veroneau, S. S.; Xu, Z.-W.; Micheroni,
ORCID
D.; Lin, W.-B. Electron Injection from Photoexcited Metal-Organic
Framework Ligands to Ru-2 Secondary Building Units for Visible-
Light-Driven Hydrogen Evolution. J. Am. Chem. Soc. 2018, 140, 5326−
5329. (b) Zeng, L.; Guo, X.-Y.; He, C.; Duan, C.-Y. Metal-Organic
Frameworks: Versatile Materials for Heterogeneous Photocatalysis.
Author Contributions
†
C.Y. and S.Z. contributed equally.
Notes
ACS Catal. 2016, 6, 7935−7947. (c) Corma, A.; García, H.; Llabres i
́
The authors declare no competing financial interest.
Xamena, F. X. Engineering Metal Organic Frameworks for Heteroge-
neous Catalysis. Chem. Rev. 2010, 110, 4606−4655. (d) Huang, Y.-B.;
Liang, J.; Wang, X.-S.; Cao, R. Multifunctional Metal−Organic
Framework Catalysts: Synergistic Catalysis and Tandem Reactions.
Chem. Soc. Rev. 2017, 46, 126−157.
ACKNOWLEDGMENTS
This work was granted financial support from the National
Nature Science Foundation of China (grants 21771072 and
■
(
8) (a) Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Metal−Organic
Frameworks as Platforms for Catalytic Applications. Adv. Mater. 2017,
703663. (b) Islamoglu, T.; Goswami, S.; Li, Z.-Y.; Howarth, A. J.;
2
1371065), Self-Determined Research Funds of CCNU from
the Colleges’ Basic Research and Operation of MOE (grant
1
CCNU17QN0020), and the 111 Project (grant B17019).
Farha, O. K.; Hupp, J. T. Postsynthetic Tuning of Metal−Organic
Frameworks for Targeted Applications. Acc. Chem. Res. 2017, 50, 805−
813. (c) Xiong, G.; Chen, X.-L.; You, L.-X.; Ren, B.-Y.; Ding, F.;
Dragutan, I.; Dragutan, V.; Sun, Y.-G. La-Metal-Organic Framework
REFERENCES
■
(
1) (a) Allen, M. R.; Frame, D. J.; Huntingford, C.; Jones, C. D.; Lowe,
J. A.; Meinshausen, M.; Meinshausen, N. Warming Caused by
Incorporating Fe O Nanoparticles, Post-Synthetically Modified with
3
4
Schiff Base and Pd. A Highly Active, Magnetically Recoverable,
Recyclable Catalyst for CAC Cross-Couplings at Low Pd Loadings. J.
Catal. 2018, 361, 116−125. (d) Fan, W.-D.; Wang, Y.-T.; Zhang, Q.;
Kirchon, A.; Xiao, Z.-Y.; Zhang, L.-L.; Dai, F.-N.; Wang, R.-M.; Sun, D.-
F. An Amino-Functionalized Metal-Organic Framework, Based on a
Cumulative Carbon Emissions towards the Trillionth Tonne. Nature
2009, 458, 1163−1166. (b) Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley,
J.; Yu, J.; Jeong, H.-K.; Balbuen, P. B.; Zhou, H.-C. Carbon Dioxide
Capture-Related Gas Adsorption and Separation in Metal-Organic
Frameworks. Coord. Chem. Rev. 2011, 255, 1791−1823. (c) Caskey, S.
R.; Wong-Foy, A. G.; Matzger, A. J. Dramatic Tuning of Carbon
Dioxide Uptake via Metal Substitution in a Coordination Polymer with
Cylindrical Pores. J. Am. Chem. Soc. 2008, 130, 10870−10871. (d) Li,
B.-Y.; Zhang, Z.-J.; Li, Y.; Yao, K.-X.; Zhu, Y.-H.; Deng, Z.-Y.; Yang, F.;
Zhou, X.-J.; Li, G.-H.; Wu, H.-H.; Nijem, N.; Chabal, Y. J.; Lai, Z.-P.;
Han, Y.; Shi, Z.; Feng, S.-H.; Li, J. Enhanced Binding Affinity,
Remarkable Selectivity, and High Capacity of CO2 by Dual
Functionalization of a rht-Type Metal−Organic Framework. Angew.
Chem., Int. Ed. 2012, 51, 1412−1415. (e) Nugent, P.; Belmabkhout, Y.;
Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.-Q.;
Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. Porous Materials
with Optimal Adsorption Thermodynamics and Kinetics for CO2
Separation. Nature 2013, 495, 80−84.
Rare Ba (COO) (NO ) Cluster, for Efficient C /C /C Separation
12
18
3
2
3
2
1
and Preferential Catalytic Performance. Chem. - Eur. J. 2018, 24, 2137−
2143.
(9) (a) Zhao, D.; Liu, X. H.; Guo, J. H.; Xu, H. J.; Zhao, Y.; Lu, Y.; Sun,
W. Y. Porous Metal-Organic Frameworks with Chelating Multiamine
Sites for Selective Adsorption and Chemical Conversion of Carbon
Dioxide. Inorg. Chem. 2018, 57, 2695−2704. (b) Xu, H.; Zhai, B.; Cao,
C.-S.; Zhao, B. A Bifunctional Europium−Organic Framework with
3
+
Chemical Fixation of CO and Luminescent Detection of Al . Inorg.
2
Chem. 2016, 55, 9671−9676.
(10) Zhou, Z.; He, C.; Xiu, J.-H.; Yang, L.; Duan, C.-Y. Metal−
Organic Polymers Containing Discrete Single-Walled Nanotube as a
Heterogeneous Catalyst for the Cycloaddition of Carbon Dioxide to
Epoxides. J. Am. Chem. Soc. 2015, 137, 15066−15069.
(
2) Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon
Dioxide. Chem. Rev. 2007, 107, 2365−2387.
3) (a) Liang, J.; Chen, R.-P.; Wang, X.-Y.; Liu, T.-T.; Wang, X.-S.;
(11) (a) Dong, J.; Cui, P.; Shi, P.-F.; Cheng, P.; Zhao, B. Ultrastrong
Alkali-Resisting Lanthanide-Zeolites Assembled by [Ln60] Nanocages.
J. Am. Chem. Soc. 2015, 137, 15988−15991. (b) Ma, D.-X.; Li, B.-Y.;
Liu, K.; Zhang, X.-L.; Zou, W.-J.; Yang, Y.-Q.; Li, G.-H.; Shi, Z.; Feng,
S.-H. Bifunctional MOF Heterogeneous Catalysts Based on the
Synergy of Dual Functional Sites for Efficient Conversion of CO2
(
Huang, Y.-B.; Cao, R. Postsynthetic Ionization of an Imidazolecontain-
ing Metal−Organic Framework for the Cycloaddition of Carbon
Cioxide and Epoxides. Chem. Sci. 2017, 8, 1570−1575. (b) Ema, T.;
Miyazaka, Y.; Shimonishi, J.; Maeda, C.; Hasegawa, J.-y. Bifunctional
G
Inorg. Chem. XXXX, XXX, XXX−XXX