RSC Advances
Paper
Table 5 Catalytic performances of Cat-0.1 and two-stage catalysts for the SCAT reaction
Selectivity of products (%)
Yield of products (%)
Catalyst
MET conv%
SEB
SSTY
SCH
SXY
3.7
19.0
11.5
SHCHO
YEB
YSTY
Y(EB+STY)
4
Cat-0.1
3%KOH/Cat-0.1
5%KOH/Cat-0.1
99.9
99.7
99.9
82.9
60.0
45.3
8.0
17.8
42.4
5.4
3.1
0.9
0.0
0.0
0.0
82.8
59.9
45.2
8.0
17.8
42.4
90.8
77.6
87.6
with the styrene selectivity changing for the Cat-n series of
catalysts as shown in Fig. 5c.
References
In order to verify the strong base sites that could promote the
side-chain alkylation of toluene with methanol to form styrene,
a series of co-catalysts m%KOH/NaX were prepared and placed
in front of Cat-0.1, where there are abundant middle base sites,
and separated by quartz wool. Under the same catalytic reaction
condition the catalytic performance for the SCAT reaction are
showed in Table 5. Compared to Cat-0.1, the selectivity of
styrene is enhanced signicantly aer introducing co-catalysts
in. When the co-catalyst is replaced by 5 wt% KOH/Cat-0.1,
the selectivity of styrene reaches 42.4%, which suggests that
the sufficient middle and strong base sites are the key factors
for the SCAT reaction to styrene.
1 Y. N. Sidorenko, P. N. Galich, V. S. Gutyrya, V. G. Ilin and
I. E. Neimark, Dokl. Akad. Nauk SSSR, 1967, 173, 132–134.
2 J. Jiang, G. Lu, C. Miao, X. Wu, W. Wu and Q. Sun,
Microporous Mesoporous Mater., 2013, 167, 213–220.
3 A. E. Palomares, G. Eder-Mirth and J. A. Lercher, J. Catal.,
1997, 168, 442–449.
4 H. Itoh, A. Miyamoto and Y. Murakami, J. Catal., 1980, 64,
284–294.
5 A. Philippou and M. W. Anderson, J. Am. Chem. Soc., 1994,
116, 5114–5183.
6 H. Hattori, Appl. Catal., A, 2015, 504, 103–109.
7 J. M. Serra, A. Corma, D. Farrusseng, L. Baumes,
C. Mirodatos, C. Flego and C. Perego, Catal. Today, 2003,
81, 425–436.
8 H. Han, M. Liu, X. W. Nie, F. S. Ding, Y. R. Wang, J. J. Li,
X. W. Guo and C. S. Song, Microporous Mesoporous Mater.,
2016, 234, 61–72.
9 P. Kovacheva, A. Predoeva, K. Arishtirova and S. Vassilev,
Appl. Catal., A, 2002, 223, 121–128.
10 T. Zhang, J. Hu and S. W. Tang, Chin. J. Chem. Eng., 2018, 26,
1513–1521.
4 Conclusions
From the characterization of the catalysts, NaX exchanged with
potassium phosphate solution can obviously improve the cata-
lytic activity and the selectivity of ethylbenzene and styrene for
the SCAT reaction. Toluene and methanol are very sensitive to
the base and acid property of the catalysts, that is different and
competitive activations will take place for toluene and methanol
over middle acid and middle base sites respectively. More
middle base sites and less middle acid sites on the surface of
the catalyst are benecial to forming ethylbenzene and styrene.
Furthermore, more strong base sites are in the favor of
producing formaldehyde; if the middle base sites are enough
exactly at the right moment, the selectivity of styrene will be
greatly enhanced. That is, the enough middle and strong base
sites are both necessary for the SCAT reaction to prepare
styrene.
11 M. L. Unland and G. E. Baker, US Pat., 4115424, Sep 19, 1978.
12 C. Lacroix, A. Deluzarche, A. Kiennemann and A. Boyer,
Zeolites, 1984, 4, 109–111.
13 L. L. Song, Y. Yu, Z. R. Li, S. Q. Guo, L. F. Zhao and W. Li, J.
Braz. Chem. Soc., 2014, 25, 1346–1354.
14 N. K. Das and K. Pramanik, J. Indian Chem. Soc., 1997, 74,
701–704.
15 H. Hattori, A. A. Amusa, R. B. Jermy, A. M. Aitani and S. S. Al-
Khattaf, J. Mol. Catal. A: Chem., 2016, 424, 98–105.
16 B. B. Tope, W. O. Alabi, A. M. Aitani, H. Hattori and S. S. Al-
Khattaf, Appl. Catal., A, 2012, 443, 214–220.
17 W. O. Alabi, B. B. Tope, R. B. Jermy, A. M. Aitani, H. Hattori
and S. S. Al-Khattaf, Catal. Today, 2014, 226, 117–123.
18 J. Z. Yin, Z. Ma, Z. Y. Shang, D. P. Hu and Z. L. Xiu, Fuel, 2012,
93, 284–287.
Conflicts of interest
There are no conicts to declare.
19 Y. S. Choi, H. Kim, S. H. Shin, M. Cheong, Y. J. Kim,
H. G. Jang, H. S. Kim and J. S. Lee, Appl. Catal., A, 2014,
144, 317–324.
20 H. H. Wang, B. Wang, Y. L. Wen and W. Huang, Catal. Lett.,
2017, 147, 161–166.
Acknowledgements
The authors are grateful to the nancial support from the
National Key Technology Research & Development Program
(Grant No. 2013BAC14B04), the National Natural Science
Foundation of China (Grant No. 21336006), the Shanxi Province
Key Research & Development Program (International Coopera-
tion, Grant No. 201803D421099), Research Project supported by
Shanxi Scholarship Council of China (Grant No. 2017-035).
21 N. Jiang, H. Jin, E. Y. Jeong and S. E. Park, J. Nanosci.
Nanotechnol., 2010, 10, 227–232.
12708 | RSC Adv., 2021, 11, 12703–12709
© 2021 The Author(s). Published by the Royal Society of Chemistry