Page 5 of 7
ACS Catalysis
(4) Peralta-Yahya, P. P.; Zhang, F.; del Cardayre, S. B.; Keasling, J.
Green Methodology in Organic Chemistry Green Chem. 2010, 12,
D. Microbial Engineering for the Production of Advanced Biofu-
els. Nature 2012, 488, 320-328.
2099-2119.
1
2
3
4
5
6
7
8
(24) Francke, R.; Little, R. D. Redox Catalysis in Organic Electro-
synthesis: Basic Principles and Recent Developments. Chem. Soc.
Rev. 2014, 43, 2492-2521.
(5) Herbert, M. B.; Marx, V. M.; Pederson, R. L.; Grubbs, R. H.
Concise Syntheses of Insect Pheromones Using Z-Selective Cross
Metathesis. Angew. Chem. Int. Ed. 2013, 52, 310-314.
(25) Hammer, S. C.; Knight, A. M.; Arnold, F. H. Design and
Evolution of Enzymes for Non-natural Chemistry. Curr. Opin.
Green Sustain. Chem. 2017, 7, 23-30.
(6) Skupinska, J. Oligomerization of α-Olefins to Higher Oligo-
mers. Chem. Rev. 1991, 91, 613-648.
(7) Small, B. L.; Brookhart, M. Iron-Based Catalysts with Excep-
tionally High Activities and Selectivities for Oligomerization of
Ethylene to Linear α-Olefins. J. Am. Chem. Soc. 1998, 120, 7143-
7144.
(26) Arnold, F. H. Directed Evolution: Bringing New Chemistry
to Life. Angew. Chem. Int. Ed. 2018, 57, 4143 – 4148.
9
(27) Romney, D. K.; Murciano-Calles, J.; Wehrmüller, J. E.; Ar-
nold, F. H. Unlocking Reactivity of TrpB: A General Biocatalytic
Platform for Synthesis of Tryptophan Analogues. J. Am. Chem.
Soc. 2017, 139, 10769-10776.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Late-Metal Catalysts
for Ethylene Homo- and Copolymerization. Chem. Rev. 2000,
100, 1169-1204.
(28) Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.;
Arnold, F. H. Enantioselective, Intermolecular Benzylic C-H
Amination Catalysed by an Engineered Iron-Haem Enzyme. Nat.
Chem. 2017, 9, 629-634.
(9) McGuinness, D. S. Olefin Oligomerization via Metallacycles:
Dimerization, Trimerization, Tetramerization, and Beyond.
Chem. Rev. 2011, 111, 2321-2341.
(10) Murray, J.; King, D. Climate Policy: Oil's Tipping Point Has
Passed. Nature 2012, 481, 433-435.
(29) Rude, M. A.; Baron, T. S.; Brubaker, S.; Alibhai, M.; Del Car-
dayre, S. B.; Schirmer, A. Terminal Olefin (1-Alkene) Biosynthesis
by a Novel P450 Fatty Acid Decarboxylase from Jeotgalicoccus
Species. Appl. Environ. Microbiol. 2011, 77, 1718-1727.
(11) Straathof, A. J. Transformation of Biomass into Commodity
Chemicals Using Enzymes or Cells. Chem. Rev. 2014, 114, 1871-
1908.
(30) Belcher, J.; McLean, K. J.; Matthews, S.; Woodward, L. S.;
Fisher, K.; Rigby, S.E.; Nelson, D. R.; Potts, D.; Baynham, M. T.;
Parker, D. A.; Leys, D.; Munro, A. W. Structure and Biochemical
Properties of the Alkene Producing Cytochrome P450 OleTJE
(CYP152L1) from the Jeotgalicoccus sp. 8456 Bacterium. J. Biol.
Chem. 2014, 289, 6535-6550.
(12) Dawes, G. J. S.; Scott, E. L.; Le Nôtre, J.; Sanders, J. P. M.;
Bitter, J. H. Deoxygenation of Biobased Molecules by Decarboxy-
lation and Decarbonylation – a Review on the Role of Heteroge-
neous, Homogeneous and Bio-catalysis. Green Chem. 2015, 17,
3231-3250.
(31) Zachos, I.; Gassmeyer, S. K.; Bauer, D.; Sieber, V.; Hollmann,
F.; Kourist, R. Photobiocatalytic Decarboxylation for Olefin Syn-
thesis. Chem. Commun. 2015, 51, 1918-1921.
(13) Miller, J. A.; Nelson, J. A.; Byrne, M. P. A Highly Catalytic
and Selective Conversion of Carboxylic Acids to 1-Alkenes of One
Less Carbon Atom. J. Org. Chem. 1993, 58, 18-20.
(32) Hsieh, C. H.; Makris, T. M. Expanding the Substrate Scope
and Reactivity of Cytochrome P450 OleT. Biochem. Biophys. Res.
Commun. 2016, 476, 462-466.
(14) Gooßen, L. J.; Rodriguez, N. A Mild and Efficient Protocol
for the Conversion of Carboxylic Acids to Olefins by a Catalytic
Decarbonylative Elimination Reaction. Chem. Commun. 2004, 6,
724-725.
(33) Matthews, S.; Tee, K. L.; Rattray, N. J.; McLean, K. J.; Leys, D.;
Parker, D. A.; Blankley, R. T.; Munro, A. W. Production of Al-
kenes and Novel Secondary Products by P450 OleTJE Using Nov-
el H2O2-Generating Fusion Protein Systems. FEBS lett. 2017, 591,
737-750.
(15) Le Nôtre, J.; Scott, E. L.; Franssen, M. C. R.; Sanders, J. P. M.
Selective Preparation of Terminal Alkenes from Aliphatic Car-
boxylic Acids by
a Palladium-Catalysed Decarbonylation–
Elimination Reaction. Tetrahedron Lett. 2010, 51, 3712-3715.
(34) Hsieh, C. H.; Huang, X.; Amaya, J. A.; Rutland, C. D.; Keys,
C. L.; Groves, J. T.; Austin, R.N.; Makris, T.M. The Enigmatic
P450 Decarboxylase OleT Is Capable of, but Evolved To Frustrate,
Oxygen Rebound Chemistry. Biochemistry 2017, 56, 3347-3357.
(16) Kraus, G.; Riley, S. A Large-Scale Synthesis of α-Olefins and
α,ω-Dienes. Synthesis 2012, 44, 3003-3005.
(17) Maetani, S.; Fukuyama, T.; Suzuki, N.; Ishihara, D.; Ryu, I.
Iron-Catalyzed Decarbonylation Reaction of Aliphatic Carboxylic
Acids Leading to α-Olefins. Chem. Commun. 2012, 48, 2552-2554.
(35) Matthews, S.; Belcher, J. D.; Tee, K. L.; Girvan, H. M.;
McLean, K. J.; Rigby, S. E.; Levy, C. W.; Leys, D.; Parker, D. A.;
Blankley, R. T.; Munro, A. W. Catalytic Determinants of Alkene
Production by the Cytochrome P450 Peroxygenase OleTJE. J. Biol.
Chem. 2017, 292, 5128-5143.
(18) Liu, Y.; Kim, K. E.; Herbert, M. B.; Fedorov, A.; Grubbs, R. H.;
Stoltz, B. M. Palladium-Catalyzed Decarbonylative Dehydration
of Fatty Acids for the Production of Linear Alpha Olefins. Adv.
Synth. Catal. 2014, 356, 130-136.
(36) Liu, Y.; Wang, C.; Yan, J.; Zhang, W.; Guan, W.; Lu, X.; Li, S.
Hydrogen Peroxide-Independent Production of α-Alkenes by
OleTJE P450 Fatty Acid Decarboxylase. Biotechnol. Biofuels 2014,
7, 28.
(19) Chatterjee, A.; Hopen Eliasson, S. H.; Törnroos, K. W.; Jen-
sen, V. R. Palladium Precatalysts for Decarbonylative Dehydra-
tion of Fatty Acids to Linear Alpha Olefins. ACS Catal. 2016, 6,
7784-7789.
(37) Dennig, A.; Kuhn, M.; Tassoti, S.; Thiessenhusen, A.; Gilch,
S.; Bülter, T.; Haas, T.; Hall, M.; Faber, K. Oxidative Decarboxyla-
tion of Short-Chain Fatty Acids to 1-Alkenes. Angew. Chem. Int.
Ed. 2015, 54, 8819-8822.
(20) Chatterjee, A.; Jensen, V. R. A Heterogeneous Catalyst for
the Transformation of Fatty Acids to α-Olefins. ACS Catal. 2017,
7, 2543-2547.
(21) Little, R. D.; Schwaebe, M. K. Reductive Cyclizations at the
Cathode. Top. Curr. Chem. 1997, 185, 1-48.
(38) Wang, J. B.; Lonsdale, R.; Reetz, M. T. Exploring Substrate
Scope and Stereoselectivity of P450 Peroxygenase OleTJE in Ole-
fin-Forming Oxidative Decarboxylation. Chem. Commun. 2016,
52, 8131-8133.
(22) Little, R. D.; Moeller, K. D. Organic Electrochemistry as a
Tool for Synthesis. Electrochem. Soc. Interface. 2002, 11, 36-42.
(23) Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma; A.;
Vasquez-Medrano, R. Organic Electrosynthesis: a Promising
(39) Dennig, A.; Kurakin, S.; Kuhn, M.; Dordic, A.; Hall, M.; Fa-
ber, K. Enzymatic Oxidative Tandem Decarboxylation of Dioic
ACS Paragon Plus Environment