Full Paper
[7]
[8]
[25] a) B. Modec, M. Šala, R. Clérac, Eur. J. Inorg. Chem. 2010, 542–553; b) R.
Aguado, J. Escribano, M. R. Pedrosa, A. De Cian, R. Sanz, F. J. Arnáiz,
Polyhedron 2007, 26, 3842–3848; c) B. Modec, J. V. Brenčič, Eur. J. Inorg.
Chem. 2005, 1698–1709; d) W. P. Griffith, J. Chem. Soc. A 1969, 211–218.
[26] a) E. Ferretti, M. Hayatifar, F. Marchetti, G. Pampaloni, S. Zacchini, Polyhe-
dron 2015, 100, 400–403; b) F. Marchetti, G. Pampaloni, S. Zacchini, Poly-
hedron 2015, 85, 369–375; c) A. J. Blake, S. Parsons, A. J. Downs, C. Lim-
berg, Acta Crystallogr., Sect. C 1995, 51, 571–573; d) C. D. Garner, L. H.
Hill, F. E. Mabbs, D. L. McFadden, A. T. McPhail, J. Chem. Soc., Dalton
Trans. 1977, 853–858; e) J. Beck, M. Koch, Z. Anorg. Allg. Chem. 2006,
632, 756–762; f) B. Knopp, K.-P. Lörcher, J. Strähle, Z. Naturforsch. B 1977,
32, 1361–1364.
T. Ernst, A. El-Kholi, U. Müller, K. Dehnicke, Z. Anorg. Allg. Chem. 1988,
566, 7–17.
E. Ferretti, M. Hayatifar, F. Marchetti, G. Pampaloni, S. Zacchini, Polyhedron
2015, 100, 400–403.
M. Bortoluzzi, M. Hayatifar, F. Marchetti, G. Pampaloni, S. Zacchini, Dalton
Trans. 2014, 43, 10157–10163.
K. Behzadi, A. O. Baghlaf, A. Thompson, J. Less-Common Met. 1978, 57,
103–110.
S. M. Horner, S. Y. Tyree Jr., Inorg. Chem. 1962, 1, 122–127.
Recent references include: a) A. J. Eberhart, H. Shrives, Y. Zhang, A. Carrër,
A. V. S. Parry, D. J. Tate, M. L. Turner, D. J. Procter, Chem. Sci. 2016, 7,
1281–1285; b) X.-F. Wu, K. Natte, Adv. Synth. Catal. 2016, 358, 336–352;
c) M. A. Fascione, R. Brabham, W. B. Turnbull, Chem. Eur. J., DOI: 10.1002/
chem.201503504; d) B. M. Trost, M. Rao, Angew. Chem. Int. Ed. 2015, 54,
5026–5043; Angew. Chem. 2015, 127, 5112–5130.
[9]
[10]
[11]
[12]
[27] a) B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echevarría, E.
Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832–2838; b) A.
Bondi, J. Phys. Chem. 1964, 68, 441–451.
[28] a) H. Böhme, P. Heller, Chem. Ber. 1953, 86, 785–790; b) H. Böhme, W.
Krack, Justus Liebigs Ann. Chem. 1972, 758, 143–147.
[13]
[14]
X. Lang, W. Hao, W. R. Leow, S. Li, J. Zhao, X. Chen, Chem. Sci. 2015, 6,
5000–5005.
[29] a) A. M. Forster, A. J. Downs, J. Chem. Soc., Dalton Trans. 1984, 2827–
2834; b) K. Hartke, E. Akgün, Chem. Ber. 1979, 112, 2436–2443; c) D. W.
Hansen Jr., R. A. Olofson, Tetrahedron 1971, 27, 4221–4229.
[30] R. Tanikaga, Y. Hiraki, N. Ono, A. Kaji, J. Chem. Soc., Chem. Commun. 1980,
41–42.
[31] Y. Hara, M. Matsuda, J. Chem. Soc., Chem. Commun. 1974, 919–920.
[32] In contrast, elimination of Cl2 from MoOCl3{CH2=S(Cl)Me} appears un-
likely, the corresponding ΔG variation being around 18.3 kcal mol–1 (see
Scheme 2, path printed in magenta).
a) M. J. Calhorda, L. F. Veiros, Sulfoxide Redox Chemistry with Molybdenum
Catalysts, in: Adv. Organomet. Chem. Catal. A. J. L. Poimbeiro, 2014, Wiley,
New York, p. 305–314; b) B. W. Yoo, M. C. Park, J. I. Shin, Bull. Korean
Chem. Soc. 2009, 30, 1927–1928; c) B. W. Yoo, M. S. Song, M. C. Park,
Synth. Commun. 2007, 37, 3089–3093; d) H. Firouzabadi, A. Jamalian,
Phosphorus Sulfur Silicon Relat. Elem. Phosphorus Sulfur Silicon 2001, 170,
211–220.
a) L. Presta, M. Fondi, G. Emiliani, R. Fani, Molybdenum Cofactors, their
role in the Evolution of Metabolic Pathways, Springer, Dordrecht, The
Netherlands, 2015; b) M. Zientek, P. Kang, M. J. Hutzler, S. R. Obach,
Encyclopedia of Drug Metabolism, Interactions (Ed.: A. V. Lyubimov),
1st ed., 2012, Wiley, New York; c) C. Shulzke, Molybdenum-, Tungsten-
Mediated Oxidations, in: Comprehensive Inorganic Chemistry II, J. Reedijk,
K. Poeppelmeier (Eds.) 2013, 9, p. 569–591.
See, for instance: a) S. Zhang, Q. Liu, H. Cheng, F. Zeng, Appl. Surf. Sci.
2015, 331, 234–240; b) M. M. Cánaves, M. I. Cabra, A. Bauzá, P. Cañellas,
K. Sánchez, F. Orvay, A. García-Raso, J. J. Fiol, A. Terrón, M. Barceló-Oliver,
P. Ballester, I. Mata, E. Molins, F. Hussain, A. Frontera, Dalton Trans. 2014,
43, 6353–6364; c) C.-Y. Liu, Y. Li, J.-Y. Ding, D.-W. Dong, F. S. Han, Chem.
Eur. J. 2014, 20, 2373–2381; d) I. Bratsos, S. Calmo, E. Zangrando, G.
Balducci, E. Alessio, Inorg. Chem. 2013, 52, 12120–12130; e) T. Shiga, Y.
Hase, Y. Kato, M. Inoue, K. Takechi, Chem. Commun. 2013, 49, 9152–9154;
f) C. Sun, Z. M. Hudson, L. D. Chen, S. Wang, Angew. Chem. Int. Ed. 2012,
51, 5671–5674; Angew. Chem. 2012, 124, 5769–5772.
a) G. Sipos, E. E. Drinkel, R. Dorta, Chem. Soc. Rev. 2015, 44, 3834–3860;
b) Y. Wang, L. Duan, L. Wang, H. Chen, J. Sun, L. Sun, M. S. G. Ahlquist,
ACS Catal. 2015, 5, 3966–3972; c) I. Ferrer, J. Rich, X. Fontrodona, M.
Rodríguez, I. Romero, Dalton Trans. 2013, 42, 13461–13469; d) F. Yuan, T.
Li, M. Zhang, H. Qian, Synth. React. Inorg. Met.-Org. Nano-Met. Chem.
2013, 43, 1510–1513; e) T. Diao, P. White, I. Guzei, S. S. Stahl, Inorg. Chem.
2012, 51, 11898–11909.
a) M. Brindell, K. Dyduch, A. Adamowicz, E. Urbanowicz, M. Oszajca, A.
Michalak, G. Stochel, R. van Eldik, Eur. J. Inorg. Chem. 2014, 1333–1344;
b) J. Kljun, I. Bratsos, E. Alessio, G. Psomas, U. Repnik, M. Butinar, B. Turk,
I. Turel, Inorg. Chem. 2013, 52, 9039–9052; c) A. Rilak, I. Bratsos, E. Zan-
grando, J. Kljun, I. Turel, Z. D. Bugarčić, E. Alessio, Inorg. Chem. 2014, 53,
6113–6126; d) L. Ronconi, P. J. Sadler, Coord. Chem. Rev. 2007, 251, 1633–
1648; e) C. G. Hartinger, N. Metzler-Nolte, P. J. Dyson, Organometallics
2012, 31, 5677–5685.
a) S. L. Benjamin, W. Levason, D. Pugh, G. Reid, W. Zhang, Dalton Trans.
2012, 41, 12548–12557; b) E. Fanti, C. M. Marschoff, J. Less-Common Met.
1981, 78, 35–44; c) C. M. Marschoff, C. Urribarrí, P. J. Aragón, J. Electro-
chem. Soc. 1977, 124, 95–96.
a) R. Balicki, Synthesis 1991, 155–156; b) S. Kikuchi, H. Konishi, Y. Hashi-
moto, Tetrahedron 2005, 61, 3587–3591.
D. B. Copley, F. Fairbrother, K. H. Grundy, A. Thompson, J. Less-Common
Met. 1964, 6, 407–412.
F. G. Bordwell, B. M. Pitt, J. Am. Chem. Soc. 1955, 77, 572–577.
M. F. Lappert, J. K. Smith, J. Chem. Soc. 1961, 3224–3230.
a) J. Beck, M. Koch, Z. Anorg. Allg. Chem. 2006, 632, 756–762; b) D. P.
Rillema, C. H. Brubaker Jr., Inorg. Chem. 1969, 8, 1645–1650; c) M. Bortol-
uzzi, G. Bresciani, F. Marchetti, G. Pampaloni, S. Zacchini, Dalton Trans.
2015, 44, 10030–10037.
[15]
[16]
[33]
J. H. Canterford, R. Colton, L. B. Tomkins, Inorg. Nucl. Chem. Lett. 1968, 4,
471–475.
[34]
The addition of water to the reaction mixtures facilitates the release of
the organic material from the highly oxophilic metal species, allowing
the spectroscopic identification of the former. This strategy has been
successfully adopted by ourselves in previous works, once we had estab-
lished that H2O is generally inert towards ligand activation reactions.
a) K. Nozaki, M. Yoshihara, K. Enomura, Y. Matsubara, T. Maeshima, Phos-
phorus Sulfur Relat. Elem. 1985, 22, 131–133; b) O. de Lucchi, U. Miotti,
G. Modena, Org. React. 1991, 40, 157–405.
[35]
[36]
a) M. Kakimoto, Y. Imai, Chem. Lett. 1984, 1831–1834; b) A. J. Bridgewater,
M. D. Sexton, J. Chem. Soc. Perkin Trans. 2 1978, 530–536; c) S. C. A.
Sousa, J. R. Bernardo, C. C. Romão, A. C. Fernandes, Tetrahedron 2012,
68, 8194–8197.
THT + MoOCl3 → MoOCl3(THT), ΔG = –15.7 kcal mol–1; THT + 1/2
[37]
[17]
[18]
Mo2Cl10 → MoCl5(THT), ΔG = –16.7 kcal mol–1
.
[38] Cl2 should be able to react with CH2Cl2 to give CHCl3 and HCl[39]
.
a) K. Brudnik, M. Twarda, D. Sarzyński, J.-T. Jodkowski, J. Mol. Model. 2013,
19, 4181–4193; b) D. Sarzyński, A. A. Gola, K. Brudnik, J. T. Jodkowski,
Chem. Phys. Lett. 2011, 514, 220–225; c) L. Sheps, A. C. Crowther, C. G.
Elles, F. Fleming Crim, J. Phys. Chem. A 2005, 109, 4296–4302; d) C. Wal-
ling, G. M. El-Taliawi, A. Sopchik, J. Org. Chem. 1986, 51, 736–738.
E. König, Magnetische Eigenschaften der Koordinations und Metallorgan-
ischen Verbindungen der Übergangselemente, in: Landolt-Börnstein, Zah-
lenwerte und Funktionen aus Naturwissenschaften und Technik, Springer-
Verlag, Berlin, Göttingen, Heidelberg, Germany, 6th ed., 1966, vol. 2,
p. 16.
[39]
[40]
[41]
D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry,
7th ed., Thomson Learning, Inc., USA, 1996.
[42]
[43]
C. E. Crouthamel, C. E. Johnson, Anal. Chem. 1954, 26, 1284–1291.
[19]
[44]
a) Y. Minenkov, Å. Singstad, G. Occhipinti, V. R. Jensen, Dalton Trans.
2012, 41, 5526–5541; b) J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem.
Phys. 2008, 10, 6615–6620; c) I. C. Gerber, J. G. Ángyán, Chem. Phys. Lett.
2005, 415, 100–105.
[20]
[21]
[45]
a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305;
b) D. Andrae, U. Häuꢀermann, M. Dolg, H. Stoll, H. Preuꢀ, Theor. Chim.
Acta 1990, 77, 123–141.
[22]
[23]
[24]
[46] a) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24,
669–681; b) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001.
[47]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-
katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Eur. J. Inorg. Chem. 2016, 3838–3845
3844
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim