1
380
Y. He, C. R. Goldsmith
LETTER
plaining the lower oxidative efficiency of PA-mediated References and Notes
bromination relative to the analogous chlorination.
(
1) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879.
To summarize, we report a novel procedure to halogenate
hydrocarbons with nonactivated aliphatic C–H bonds that
uses commercially available PA as a terminal oxidant and
a halide salt as the terminal halogen source. The synthetic
protocol can be adapted to work in water, with NaCl or
NaBr as the halogen source. The incidence of side prod-
ucts can be modulated and minimized by adjusting the
concentrations of oxidant and halide. The major drawback
to this method is that both aromatic C–H activation and
the dihalogenation of alkenes proceed much more quickly
than aliphatic C–H activation.
(2) Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471.
(
(
(
3) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103,
861.
4) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N.
Acc. Chem. Res. 2004, 38, 349.
5) Fulmer, D. A.; Shearouse, W. C.; Medonza, S. T.; Mack, J.
Green Chem. 2009, 11, 1821.
2
(6) Cohen, A.; Crozet, M. D.; Rathelot, P.; Vanelle, P. Green
Chem. 2009, 11, 1736.
(
(
(
7) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981,
1, 513.
8) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
975, 16, 4467.
1
1
9) Larock, R. C. Comprehensive Organic Transformations, 2nd
ed.; Wiley-VCH: New York / NY, 1999.
Proton and carbon13 nuclear magnetic resonance (1H NMR, 13C
(
(
(
10) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.
11) Metrangolo, P.; Resnati, G. Science 2008, 321, 918.
12) Podgoršek, A.; Zupan, M.; Iskra, J. Angew. Chem. Int. Ed.
NMR) spectra were collected on either a 400 MHz or a 250 MHz
Bruker AV spectrometer. All NMR spectra were referenced to in-
ternal standards. Gas chromatography (GC) was performed on a
Hewlett Packard 5890 gas chromatograph with either a flame ion-
ization detector (FID) or a Fissons Instruments electrospray mass
spectrometry detector (GC-MS). High resolution mass spectrome-
try (HRMS) data were acquired at the Mass Spectrometry Center at
Auburn University on a Microflex LT MALDI-TOF Mass Spec-
trometer (Bruker Corporation).
2009, 48, 8424.
(
(
(
13) Stowers, K. J.; Sanford, M. S. Org. Lett. 2009, 11, 4584.
14) Yang, L.; Lu, Z.; Stahl, S. S. Chem. Commun. 2009, 6460.
15) Kalyani, D.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130,
2150.
(
(
16) Xia, J.-B.; You, S.-L. Org. Lett. 2009, 11, 1187.
17) Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.;
Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem.
Soc. 2009, 131, 11310.
EtOH was purchased from Fluka and used as received. NaCl, NaBr,
Na CO , MgSO , pentane, CH Cl , chlorobenzene, cyclohexanol,
2
3
4
2
2
iodosobenzene (PhIO), PA (32% in AcOH), TBHP, H O , and
2
2
(
(
(
18) Bogdal, D.; Lukasiewicz, M.; Pielichowski, J. Green Chem.
MCPBA were bought from Sigma-Aldrich and used without further
purification. The latter five chemicals were stored in a refrigerator
when not in use. Anhydrous MeCN, TEACl, TEABr, toluene, ada-
mantane, cyclohexene, and cyclohexane were purchased from
Sigma-Aldrich and stored in a nitrogen atmosphere drybox to keep
them free of oxygen and moisture. Anthracene was bought from
Sigma-Aldrich and recrystallized twice from EtOH prior to use.
Acetonitrile-d and chloroform-d (CDCl ) were purchased from
2
004, 6, 110.
19) Kojima, T.; Matsuo, H.; Matsuda, Y. Chem. Lett. 1998,
085.
20) Banks, D. F.; Huyser, E. S.; Kleinberg, J. J. Org. Chem.
002, 29, 3692.
1
2
(
(
(
21) Breslow, R.; Link, T. Tetrahedron Lett. 1992, 33, 4145.
22) Zielinksa, A.; Skulski, L. Tetrahedron Lett. 2004, 45, 1087.
23) Leising, R. A.; Zang, Y.; Que, L. Jr. J. Am. Chem. Soc. 1991,
3
3
Cambridge Isotopes.
113, 8555.
Each reaction was run at least three times to ensure reproducibility.
The substrate and the halide salt were first put under nitrogen. After
these reagents were dissolved, the oxidant was added dropwise. The
system was subsequently sealed and stirred for 8 h at 22 °C. At the
end of the reaction, chlorobenzene was added as an internal refer-
ence before product analysis by gas chromatography. Chloroben-
zene was selected as an internal standard since it was found to be
inert under the reaction conditions. Parallel reactions were run in
(24) Kojima, T.; Leising, R. A.; Yan, S.; Que, L. Jr. J. Am. Chem.
Soc. 1993, 115, 11328.
(25) Tanemura, K.; Suzuki, T.; Nishida, Y.; Horaguchi, T.
Tetrahedron Lett. 2008, 49, 6419.
(26) Zhuk, T. S.; Gunchenko, P. A.; Korovai, Y. Y.; Schreiner,
P. R.; Fokin, A. A. Theor. Exp. Chem. 2008, 44, 48.
(27) Jiang, X.; Shen, M.; Tang, Y.; Li, C. Tetrahedron Lett. 2005,
46, 487.
deuterated solvents, such as MeCN-d , in order to confirm the iden-
tities and ratios of the products by H NMR. This general procedure
(28) Tian, Z.; Fattahi, A.; Lis, L.; Kass, S. R. J. Am. Chem. Soc.
2006, 128, 17087.
3
1
was followed for all substrate reactions except where noted other-
wise. Representative reactions are discussed in greater detail in the
Supporting Information.
(29) Podgoršek, A.; Stavber, S.; Zupan, M.; Iskra, J. Tetrahedron
Lett. 2006, 47, 7245.
(30) Jia, Z.; Margerum, D. W.; Francisco, J. S. Inorg. Chem.
2
000, 39, 2614.
(
31) El Dusouqui, O. M. H.; El Nadi, A. R. H.; Hassan, M.;
Yousif, G. J. Chem. Soc., Perkin Trans. 2 1976, 357.
32) El Dusouqui, O. M. H.; Hassan, M.; El Nadi, A. R. H.;
Yousif, G. J. Chem. Soc., Perkin Trans. 2 1976, 359.
33) Deacon, H. J. Chem. Soc. 1872, 25, 725.
34) Awad, M. I.; Denggerile, A.; Ohsaka, T. J. Electrochem.
Soc. 2004, 151, E358.
Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
(
(
(
Acknowledgement
This research was funded by Auburn University.
(
(
35) Giessen, N. A. Ber. Deutsch. Chem. Ges. 1914, 47, 247.
36) Dieter, R. K.; Nice, L. E.; Velu, S. E. Tetrahedron Lett.
1996, 37, 2377.
Synlett 2010, No. 9, 1377–1380 © Thieme Stuttgart · New York