Page 5 of 6
Journal of the American Chemical Society
Leitner, W. Hydrogenation of carbon dioxide to methanol using a ho-
Voisine, A.; Wang, D.; Roisnel, T.; Darcel, C.; Sortais, J.-B. Hydrogena-
tion of Ketones with a Manganese PN3 P Pincer Pre-Catalyst. Catal.
Commun. 2017, 92, 1−4. (g) Glatz, M.; Stꢀger, B.; Himmelbauer, D.;
Veiros, L. F.; Kirchner, K. Chemoselective Hydrogenation of Alde-
hydes under Mild, Base-Free Conditions: Manganese Outperforms
Rhenium. ACS Catal. 2018, 8, 4009−4016. (h) Widegren, M. B.; Hark-
ness, G. J.; Slawin, A. M. Z.; Cordes, D. B.; Clarke, M. L. A Highly Active
Manganese Catalyst for Enantioselective Ketone and Ester Hydro-
genation. Angew. Chem., Int. Ed. 2017, 56, 5825−5828. (i) Garbe, M.;
Junge, K.; Walker, S.; Wei, Z.; Jiao, H.; Spannenberg, A.; Bachmann,
S.; Scalone, M.; Beller, M. Manganese- (I)-Catalyzed Enantioselective
Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand.
Angew. Chem., Int. Ed. 2017, 56, 11237−11241.
mogeneous ruthenium–Triphos catalyst: from mechanistic investiga-
tions to multiphase catalysis. Chem. Sci. 2015, 6, 693-704; (g) Jacob, S.;
Rosa, A.; Wolfgang, B.; Ralf, J.; Beller, M. Low‐Temperature Hydro‐
genation of Carbon Dioxide to Methanol with a Homogeneous Cobalt
Catalyst. Angew. Chem. Int. Ed. 2017, 56, 1890-1893.
(6) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J.; Milstein,
D. Efficient hydrogenation of organic carbonates, carbamates and
formates indicates alternative routes to methanol based on CO2 and
CO. Nat. Chem. 2011, 3, 609-614.
1
2
3
4
5
6
7
8
(7) Balaraman, E.; Ben-David, Y.; Milstein, D. Unprecedented cat-
alytic hydrogenation of urea derivatives to amines and methanol. An-
gew. Chem. Int. Ed. 2011, 50, 11702 –11705.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. Combining Low-
Pressure CO2 Capture and Hydrogenation to Form Methanol. ACS
Catal. 2015, 5, 2416-2422.
(9) (a) Huff, C. A.; Sanford, M. S. Cascade Catalysis for the Homo-
geneous Hydrogenation of CO2 to Methanol. J. Am. Chem. Soc. 2011,
133, 18122–18125. (b) Rezayee, N. M.; Huff, C. A.; Sanford, M. S. Tandem
Amine and Ruthenium-Catalyzed Hydrogenation of CO2 to Metha-
nol. J. Am. Chem. Soc. 2015, 137, 1028−1031. (c) Huff, C. A.; Sanford, M.
S. Catalytic CO2 Hydrogenation to Formate by a Ruthenium Pincer
Complex. ACS Catal. 2013, 3, 2412−2416.
(14) Kumar, A.; Janes, T.; Espinosa-Jalapa, N. A.; Milstein, D. Man-
ganese catalyzed hydrogenation of organic carbonates to methanol
(15) (a) Kaithal, A.; Hölscher, M.; Leitner, W. Catalytic Hydrogena-
tion of Cyclic Carbonates using Manganese Complexes. Angew. Chem.
2018, 130, 13637–13641. (b) Zubar, V.; Lebedev, Y.; Azofra, L. M.;
Cavallo, L.; El‐Sepelgy, O.; Rueping, M. Hydrogenation of CO2‐
Derived Carbonates and Polycarbonates to Methanol and Diols by
Metal–Ligand Cooperative Manganese Catalysis. Angew. Chem. Int.
Ed. 2018, 57, 13439–13443.
(16) Mukherjee, A.; Nerush, A.; Leitus, G.; Shimon, L. J. W.; Ben-
David, Y.; Espinosa Jalapa, N. A.; Milstein, D. Manganese-Catalyzed
Environmentally Benign Dehydrogenative Coupling of Alcohols and
Amines to Form Aldimines and H2: A Catalytic and Mechanistic Study.
J. Am. Chem. Soc. 2016, 138, 4298-4301.
(17) (a) Kumar, A.; Janes, T.; Espinosa-Jalapa, Milstein, D. Synthesis
of cyclic imides by acceptorless dehydrogenative coupling of diols and
amines catalyzed by a manganese pincer complex. J. Am. Chem.
Soc. 2017, 139, 11722-11725. (b) Espinosa-Jalapa, N. A.; Nerush, A.;
Shimon, L. J. W.; Leitus, G.; Avram, L.; Ben-David, Y.; Milstein. D.
Manganese-Catalyzed Hydrogenation of Esters to Alcohols. Chem.
Eur. J. 2017, 23, 5934-5938.
(10) (a) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.;
Surya Prakash, G. K. Conversion of CO2 from Air into Methanol Using
a Polyamine and a Homogeneous Ruthenium Catalyst. J. Am. Chem.
Soc. 2016, 138, 778−781. (b) Kar, S.; Goeppert, A.; Jotheeswari Kothan-
daraman, J.; Surya Prakash G. K. Manganese-Catalyzed Sequential
Hydrogenation of CO2 to Methanol via Formamide. ACS Catal. 2017,
7, 6347−6351. (c) Integrative CO2 Capture and Hydrogenation to
Methanol with Reusable Catalyst and Amine: Toward a Carbon Neu-
tral Methanol Economy. J. Am. Chem. Soc. 2018, 140, 1580−1583.
(11) Xie, Y.; Hu, P.; Ben-David, Y.; Milstein. D. A Reversible Liquid
Organic Hydrogen Carrier System Based on Methanol-Ethylenedia-
mine and Ethylene Urea. Angew. Chem. Int. Ed. 2019, 131, 5159-5163.
(12) Reviews on catalysis by base metal complexes: (a) Bullock, R.
M. Abundant Metals Give Precious Hydrogenation Performance. Sci-
ence 2013, 342, 1054-1055. (b) Chirik, P.; Morris, R. Getting Down to
Earth: The Renaissance of Catalysis with Abundant Metals. Acc. Chem.
Res. 2015, 48, 2495-2495. (c) Kallmeier, F.; Kempe, R. Manganese
Complexes for (De) Hydrogenation Catalysis: A Comparison to Cobalt
and Iron Catalysts. Angew. Chem. Int. Ed. 2018, 57, 46-60. (d) Garbe,
M.; Junge, K.; Beller, M. Homogeneous Catalysis by Manganese‐Based
Pincer Complexes. Eur. J. Org. Chem. 2017, 4344-4362. (e) Maji, B.;
Barman, M. K. Recent Developments of Manganese Complexes for
Catalytic Hydrogenation and Dehydrogenation Reactions. Synthesis
2017, 49, 3377–3393. (f) Gorgas, N.; Kirchner, K. Isoelectronic Manga-
nese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities
and Divergences. Acc. Chem. Res. 2018, 51, 1558−1569. (h) Mukherjee,
A.; Milstein, D. Homogeneous Catalysis by Cobalt and Manganese
Pincer Complexes. ACS Catal. 2018, 8, 11435−11469. (i) Alig, L.; Fritz,
M.; Schneider, S. Chem. Rev., 2019, 119, 2681 –2751.
(13) (a) Kallmeier, F.; Irrgang, T.; Dietel, T.; Kempe, R. Highly Active
and Selective Manganese C=O Bond Hydrogenation Catalysts: The
Importance of the Multidentate Ligand, the Ancillary Ligands, and the
Oxidation State. Angew. Chem. Int. Ed. 2016, 55, 11806-110809. (b)
Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.; Spannenberg, A.; Bau-
mann, W.; Ludwig, R.; Junge, K.; Beller, M. Selective Catalytic Hydro-
genations of Nitriles, Ketones, and Aldehydes by Well-Defined Man-
ganese Pincer Complexes. J. Am. Chem. Soc. 2016, 138, 8809-8814. (c)
Elangovan, S.; Garbe, M.; Jiao, H.; Spannenberg, A.; Junge, K.; Beller,
M. Hydrogenation of Esters to Alcohols Catalyzed by Defined Manga-
nese Pincer Complexes. Angew. Chem. Int. Ed. 2016, 55, 15364-13368.
(d) Papa, V.; Cabrero-Antonino, J. R.; Alberico, E.; Spanneberg, A.;
Junge, K.; Jungea, H.; Beller, M. Efficient and selective hydrogenation
of amides to alcohols and amines using a well-defined manganese–
PNN pincer complex. Chem. Sci., 2017, 8, 3576-3585. (e) Zou, Y-Q.;
Chakraborty, S.; Nerush, A.; Oren, D.; Diskin-Posner, Y.; Ben-David,
Y.; Milstein, D. Highly selective, efficient deoxygenative hydrogena-
tion of amides catalyzed by a manganese pincer complex via metal-
ligand cooperation. ACS Catal. 2018, 8, 8014-8019. (f) Bruneau-
(18) Das, U. K.; Ben-David, Y.; Diskin-Posner, Y.; Milstein, D. N‐
Substituted Hydrazones by Manganese‐Catalyzed Coupling of Alco‐
hols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehy-
drogenation in One System. Agew. Chem., Int. Ed. 2018, 57, 2179-2182.
(19) Das, U. K.; Ben-David, Y.; Leitus, G.; Diskin-Posner, Y.; Mil-
stein, D. Dehydrogenative Cross-Coupling of Primary Alcohols To
Form Cross-Esters Catalyzed by a Manganese Pincer Complex ACS
Catal. 2019, 9, pp 479–484.
(20) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein,
D. Direct Hydrogenation of Amides to Alcohols and Amines under
Mild Conditions. J. Am. Chem. Soc. 2010, 132, 16756−16758.
ACS Paragon Plus Environment