1
94
J. Pola et al. / Journal of Photochemistry and Photobiology A: Chemistry 220 (2011) 188–194
[
10] L. Zandee, R.B. Bernstein, Resonance-enhanced multiphoton ionization and
fragmentation of molecular beams: NO, I2, benzene, and butadiene, J. Chem.
Phys. 71 (1979) 1359–1372.
[29] A.A. Galuska, H.H. Madden, R.E. Allred, Electron spectroscopy of graphite,
graphite oxide and amorphous carbon, Appl. Surf. Sci. 32 (1988)
253–272.
[30] J.C. Lascovich, R. Giorgi, S. Scaglione, Evaluation of the sp /sp ratio in amor-
phous carbon structure by XPS and XAES, Appl. Surf. Sci. 47 (1991) 17–21.
[31] R.G.J. Miller, H.A. Willis, Infrared Structural Correlation Tables, Spectrum House,
Heyden & Son, Ltd., London, 1969.
[32] H. Ohldag, P. Esquinazi, E. Arenholz, D. Spemann, M. Rothermel, E. Setzer, T.
Butz, The role of hydrogen in room-temperature ferromagnetism at graphite
surfaces, New J. Phys. 12 (2010) 123012 (10 p).
2
3
[11] Y. Mori, Y. Kitagawa, Multiphoton ionization and fragmentation process of ben-
zene at 193 nm involving ionization of neutral fragments, Bull. Chem. Soc. Jpn.
6
6 (1993) 1043–1052.
[
[
12] J.P. Reilly, K.L. Kompa, Laser induced multiphoton ionization mass spectrum of
benzene, J. Chem. Phys. 73 (1980) 5468–5477.
13] N. Nakashima, H. Inoue, M. Sumitani, K. Yoshihara, Laser flash photolysis of
benzene. II. Laser-induced cluster formation in gas phase, J. Chem. Phys. 73
(
1980) 4693–4694.
[33] T.L. Makarova, Studies of High-Temperature Superconductivity, Nova Science
Publisher, Inc., New York, 2003.
[
[
14] M. Kauer, H.G. Wagner, Photocondensation in benzene vapor using a single-
pulse UV laser, Z. Phys. Chem. 153 (1987) 109–127.
[34] P. Esquinazi, A. Setzer, R. Höhne, C. Semmelhack, Y. Kopelevich, D. Spemann, T.
Butz, B. Kohlstrunk, M. Lösche, Ferromagnetism in oriented graphite samples,
Phys. Rev. B 66 (2002) 024429 (10 p).
[35] A.A. Ovchinnikov, V.N. Spector, Organic ferromagnets, new results, Synth. Met-
als 27B (1988) 615–624.
15] J. Pola, S. Bakardjieva, M. Mary sˇ ko, V. Vorlí cˇ ek, J. Sˇ ubrt, Z. Bastl,
A. Galíková, A. Ouchi, Laser-induced conversion of silica into nano-
sized carbon–polyoxocarbosilane composites, J. Phys. Chem. C 111 (2007)
1
6818–16826.
[
16] J.H. Kiefer, L.J. Mizerka, M.R. Patel, H.-C. Wei, A shock tube investigation of
[36] K. Murata, H. Ushijima, H. Ueda, K. Kawaguchi, A stable carbon-based organic
magnet, J. Chem. Soc. Chem. Commun. (1992) 567–569.
major pathways in the high temperature pyrolysis of benzene, J. Phys. Chem.
8
9 (1985) 2013–2019.
[37] H. Araki, K. Toshibo, Spontaneous magnetization phenomena in pyrolyzed
organic compounds containing nitrogen atoms, Jpn. J. Appl. Phys. 31 (1992)
L130–L133.
[
17] H.F. Calcote, Mechanism of soot nucleation in flames – a critical review, Com-
bust. Flame 42 (1981) 215–242.
[
18] S.-I. Shih, T.-C. Lin, M. Shih, Decomposition of benzene in the RF plasma environ-
ment. Part II. Formation of polycyclic aromatic hydrocarbons, J. Hazard. Mater.
B 117 (2005) 149–159.
[38] H. Pardo, R. Faccio, F.M. Araújo-Moreira, O.F. de Lima, A.W. Mombrú, Synthesis
and characterization of stable room temperature bulk ferromagnetic graphite,
Carbon 44 (2006) 565–569.
[
19] R.F.C. Brown, Pyrolytic Methods in Organic Chemistry, Organic Chemistry
Monographs, vol. 41, Academic Press, New York, 1980.
20] F. Stahl, P.R.v. Schleyer, H.F. Schaefer III, R.I. Kaiser, Reactions of ethynyl radicals
as a source of C4 and C5 hydrocarbons in Titan’s atmosphere, Planet Space Sci.
[39] R. Höhne, K.-H. Han, P. Esquinazi, A. Setzer, H. Semmelhack, D. Spemann, T.
Butz, Magnetism of pure, disordered carbon films prepared by pulsed laser
deposition, J. Magn. Magn. Mater. 272–276 (2004) e839–e840.
[40] T. Saito, T. Ozeki, K. Terasníma, Magnetism in diamond-like carbon, Solid State
Commun. 136 (2005) 546–549.
[
5
0 (2002) 685–692.
[
[
[
21] A. Lifshitz, A. Moran, S. Bidani, Thermal reactions of acetonitrile at high temper-
atures. Pyrolysis behind reflected shocks, Int. J. Chem. Kinet. 19 (1987) 61–79.
22] A. Lifshitz, C. Tamburu, Thermal decomposition of acetonitrile. Kinetic model-
ing, Int. J. Chem. Kinet. 30 (1998) 341–347.
23] J. Pola, A. Ouchi, S. Bakardjieva, V. Vorlí cˇ ek, M. Mary sˇ ko, J. Sˇ ubrt, Z. Bastl, Laser
[41] A.V. Rode, E.G. Gamaly, A.G. Christy, J.G. Fitz Gerald, S.T. Hyde, R.G. Elliman,
B. Luther-Davies, A.I. Center, J. Androulakis, J. Giapintzakis, Unconventional
magnetism in all-carbon nanofoam, Phys. Rev. B 70 (2004) 054407 (9 p).
[42] S. Talapatra, P.G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath,
S. Sestava, S.C. Deevi, P.M. Ajayan, Irradiation-induced magnetism in carbon
nanostructures, Phys. Rev. Lett. 95 (2005) 097201 (4 p).
[43] A.L. Friedman, H. Chun, Y.J. Jung, D. Heiman, E.R. Glaser, L. Menon, Possible
room-temperature ferromagnetism in hydrogenated carbon nanotubes, Phys.
Rev. B 81 (2010) 115461 (4 p).
[44] X. Yang, H. Xia, X. Qin, W. Li, Y. Dai, X. Liu, M. Zhao, Y. Xia, S. Yan, B. Wang, Cor-
relation between the vacancy defects and ferromagnetism in graphite, Carbon
47 (2009) 1399–1406.
[45] P. Esquinazi, R. Höhne, Magnetism in carbon structures, J. Magn. Magn. Mater.
290–291 (2005) 20–27.
[46] J. Pola, A. Galíková, S. Bakardjieva, J. Sˇ ubrt, Z. Bastl, V. Vorlí cˇ ek, M. Mary sˇ ko,
photochemical etching of silica: nanodomains of crystalline chaoite and silica
in amorphous C/Si/O/N phase, J. Phys. Chem. C 112 (2008) 13281–13286.
24] R.O. Dillon, J.A. Woollam, V. Katkanant, Use of Raman scattering to investigate
disorder and crystalline formation in as-deposited and annealed carbon films,
Phys. Rev. B 29 (1984) 3482–3489.
[
[
[
[
[
26] R.N. Tarrant, D.R. McKenzie, M.M.M. Bilek, Raman characterization of PIII mul-
tilayer carbon films, Diamond Relat. Mater. 13 (2004) 1422–1426.
27] C. Casiraghi, A.C. Ferrari, J. Robertson, Raman spectroscopy of hydrogenated
amorphous carbons, J. Phys. Rev. B 72 (085401) (2005) 14 p.
A. Ouchi, MW UV laser photolysis of dichloroethene for gas-phase depo-
sition of nanosized chlorinated soot, J. Phys. Chem. C 114 (2010) 16153–
16159.
28] NIST X-ray Photoelectron Spectroscopy Database 20, Version 3.5 (2030;