Cyanation of oꢀdichloroarenes
Russ.Chem.Bull., Int.Ed., Vol. 61, No. 5, May, 2012
983
Biphenyl (5). MS (EI, 70 eV), m/z (Irel (%)): 154 [M]+ (15),
153 [M – H]+ (100), 76 (53).
Gas chromatography (with calibration coefficients) was used
for quantitative analysis of the reaction mixtures. The relative
reactivity was determined by the method of competitive reacꢀ
tions; calculations were based on the consumption of the starting
substrates.
12. M. B. Smith, J. March, March’s Advanced Organic Chemisꢀ
try: Reactions, Mechanisms and Structure, 6th ed., Wiley,
2007, p. 885.
13. G. P. Ellis, T. M. RomneyꢀAlexander, Chem. Rev., 1987,
87, 779.
14. K. Takagi, T. Okamoto, Y. Sakakibara, S. Oka, Chem. Lett.,
1973, 471.
Determination of relative rates of cyanation (general proceꢀ
dure). The 25 mL Schlenk flask was charged with a pair of studꢀ
ied aryl halides (2 mmol of each), the GC internal standard
(1,2,4,5ꢀtetramethylbenzene or naphthalene), potassium hexaꢀ
cyanoferrate(II) trihydrate (1.8 g, 4.2 mmol), sodium carbonate
(1.1 g, 10 mmol), and DMF (10 mL). The mixture was stirred
and aliquot for the GC analysis was taken. Then the mixture was
magnetically stirred and flushed with argon for 0.5 h. To the
mixture, the flushed with argon solution of palladium acetate
(0.020 g, 0.09 mmol) and triphenylphosphine (0.080 g, 0.3 mmol)
in DMF (2 mL) was added. The mixture was heated at 140 2 C
(bath temperature) for 10—12 h (conversion of the starting maꢀ
terial was 30—70%) with stirring. After completion of the reacꢀ
tion, an aliquot (0.5 mL) was taken, diluted with water (2 mL),
and unreacted starting compounds and internal standard were
extracted with hexane (2×2 mL). The organic layer was separatꢀ
ed, washed with brine (2 mL), and analyzed by GC.
15. P. Anbarasan, T. Schareina, M. Beller, Chem. Soc. Rev.,
2011, 40, 5049.
16. M. Sundermeier, A. Zapf, S. Mutyala, W. Baumann, J. Sans,
S. Weiss, M. Beller, Chem. Eur. J., 2003, 9, 1828.
17. L. H. Jones, N. W. Summerhill, N. A. Swain, J. E. Mills,
Med. Chem. Commun., 2010, 1, 309.
18. T. Schareina, A. Zapf, M. Beller, Chem. Commun.,
2004, 1388.
19. H. R. Chobanian, B. P. Fors, L. S. Lin, Tetrahedron. Lett.,
2006, 47, 3303.
20. G. Chen, J. Weng, Z. Zhanchao, X. Zhu, Y. Cai, J. Cai,
Y. Wan, Eur. J. Org. Chem., 2008, 3524.
21. A.ꢀR. Hajipour, K. Karami, A. Pirisedigh, Appl. Organomet.
Chem., 2010, 24, 454.
22. A.ꢀR. Hajipour, F. Abrisham, G. Tavakoli, Transition Metal
Chemistry, 2011, 36, 725.
23. T. Schareina, A. Zapf, W. Maegerlein, N. Mueller, M. Beller,
Tetrahedron Lett., 2007, 48, 1087.
This work was financially supported by Ministry of
Education and Science of the Russian Federation (Federal
target program "Scientific and ScientificꢀPedagogical Perꢀ
sonnel of Innovative Russia", event 1.2.1, state contract
No. Pꢀ676 from 20.05.2010), SaintꢀPetersburg State Uniꢀ
versity (Grant for Scientific Research in 2011—2013), and
the Russian Foundation for Basic Research (Project
No. 11ꢀ03ꢀ00048ꢀa).
24. T. Schareina, R. Jackstell, T. Schulz, A. Zapf, A. Cotte´,
M. Gotta, M. Beller, Adv. Synth. Catal., 2009, 351, 643.
25. J. Zhang, X. Chen, T. Hu, Y. Zhang, K. Xu, Y. Yu, J. Huang,
Cat. Lett., 2010, 139, 56.
26. P. Y. Yeung, C. M. So, C. P. Lau, F. Y. Kwong, Org. Lett.,
2011, 13, 648.
27. DE Pat. 102006056208; Chem. Abstrs, 149, 32745.
28. E. A. Savicheva, M. S. Fonari, I. A. Boyarskaya, V. P. Boyarꢀ
skiy, J. Mol. Struct., 2011, 998, 79.
29. A. Yu. Tolbin, V. E. Pushkarev, E. V. Shulishov, A. V. Ivanov,
L. G. Tomilova, N. S. Zefirov, Mendeleev Commun., 2005, 24.
30. S. Chen, X. Xu, Y. Liu, W. Qiu, G. Yu, H. Wang, D. Zhu,
J. Phys. Chem. C, 2007, 111, 1029.
31. S. Chen, X. Xu, Y. Liu, G. Yu, X. Sun, W. Qiu, Y. Ma,
D. Zhu, Adv. Funct. Mater., 2005, 15, 1541.
32. T. Schareina, A. Zapf, M. Beller, J. Ogranomet. Chem., 2004,
689, 4576.
33. M. D. Mullin, C. M. Pochini, S. McCrindle, M. Romkes,
S. H. Safe, L. M. Safe, Environ. Sci. Technol., 1984, 18, 468.
34. M. Bolgar, J. Cunningham, R. Cooper, R. Kozloski, J. Hubꢀ
ball, D. P. Miller, T. Crone, Chemosphere, 1995, 31, 2687.
35. S. A. Mikhailenko, S. A. Gladyr, E. A. Luk´yanets, Zh. Org.
Khim., 1972, 8, 341 [J. Org. Chem. USSR (Engl. Transl.),
1972, 8].
References
1. M. Hatsuda, M. Seki, Tetrahedron, 2005, 61, 9908.
2. V. Yu. Kukushkin, A. J. L. Pombeiro, Chem. Rev., 2002,
102, 1771.
3. M. B. Smith, J. March, March’s Advanced Organic Chemisꢀ
try: Reactions, Mechanisms and Structure, 6th ed., Wiley,
2007, p. 1547.
4. M. B. Smith, J. March, March’s Advanced Organic Chemisꢀ
try: Reactions, Mechanisms and Structure, 6th ed., Wiley,
2007, p. 1287.
5. T. Sandmeyer, Ber. Dtsch. Chem. Ges., 1884, 17, 2650.
6. I. P. Beletskaya, A. S. Sigeev, A. S. Peregudov, P. V. Petrovꢀ
skii, J. Organomet. Chem., 2004, 689, 3810.
36. S. Turchi, D. Giomi, C. Capaccioli, R. Nesi, Tetrahedron,
1997, 53, 11711.
7. A. Martin, V. N. Kalevaru, Chem. Cat. Chem., 2010, 2, 1504.
8. A. Wahl, Bull. Soc. Chim. Fr., Memoires, 1939, 6, 533.
9. J. E. Jones, J. Org. Chem., 1945, 10, 537.
10. K. W. Rosenmund, E. Struck, Chem. Ber., 1919, 52, 1749.
11. J. von Braun, E. Anton, Chem. Ber., 1934, 67, 1051.
Received May 18, 2011;
in revised form February 29, 2012