Journal of the American Chemical Society
Communication
(8) (a) Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. Angew.
Chem., Int. Ed. 2013, 52, 1. (b) Falk, A.; Goederz, A.-L.; Schmalz, H.-
G. Angew. Chem., Int. Ed. 2013, 52, 1576. (c) Velcicky, J.; Soicke, A.;
Steiner, R.; Schmalz, H.-G. J. Am. Chem. Soc. 2011, 133, 6948.
(9) (a) Laulhe, S.; Gori, S. S.; Nantz, M. H. J. Org. Chem. 2012, 77,
9334. (b) Kamijo, S.; Hoshikawa, T.; Inoue, M. Org. Lett. 2011, 13,
5928. (c) Lamani, M.; Prabhu, K. R. Angew. Chem., Int. Ed. 2010, 49,
6622. (d) Oishi, T.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed.
2009, 48, 6286. (e) Rajender Reddy, K.; Uma Maheswari, C.;
Venkateshwar, M.; Prashanthi, S.; Lakshmi Kantam, M. Tetrahedron
Lett. 2009, 50, 2050. (f) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller,
M. Org. Lett. 2009, 11, 2461.
(22) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa,
M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew. Chem.,
Int. Ed 1998, 37, 1703.
(23) Murahashi, S.; Naota, T.; Ito, K.; Maeda, Y.; Taki, H. J. Org.
Chem. 1987, 52, 4319.
(24) Hallman, P. S.; McGarvey, B. R.; Wilkinson, G. J. Chem. Soc. A
1968, 3143.
(25) Muthaiah, S.; Hong, S. H. Adv. Synth. Catal. 2012, 354, 3045.
(26) We note that amine double dehydrogenation catalysis was
reported (see ref 16) with a single amine substrate (benzylamine) in
low yield with no experimental provided.
(27) Blum, Y.; Shvo, Y. J. Organomet. Chem. 1985, 282, C7.
(28) Note that this complex was previously reported to promote
amine coupling to generate secondary amines. The proposed pathway
operates via a hydrogen borrowing mechanism where imine
dissociation occurs after amine dehydrogenation. The free imine is
susceptible to nucleophilic attack by an amine, followed by ammonia
elimination. See (a) Conley, B. L.; Pennington-Boggio, M. K.; Boz, E.;
Williams, T. J. Chem. Rev. 2010, 110, 2294. (b) Hollmann, D.; Haijun,
J.; Spannerberg, A.; Bahn, S.; Tillack, A.; Parton, R.; Altink, R.; Beller,
M. Organometallics 2009, 28, 473. (c) Jung, C. W.; Fellmann, J. D.;
Garrou, P. E. Organometallics 1983, 2, 1042.
(10) Grasselli, R. K. Catal. Today 1999, 49, 141.
(11) (a) Murahashi, S.-I., Imada, Y. Amine Oxidation. In Transition
Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH:
Weinheim, Germany, 2008; pp 497. (b) Porta, F.; Crotti, C.; Cenini,
S.; Palmisano, G. J. Mol. Catal. 1989, 50, 333.
(12) (a) Green, G.; Griffith, W. P.; Hollinshead, D. M.; Ley, S. V.;
Schroder, M. J. Chem. Soc. Perkin Trans. 1 1984, 681. (b) Lee, J. B.;
Parkin, C.; Shaw, M. J.; Hampson, N. A.; Macdonald, K. I. Tetrahedron
1973, 29, 751. (c) Clarke, T. G.; Hampson, N. A.; Lee, J. B.; Morley, J.
R.; Scanlon, B. Tetrahedron Lett. 1968, 9, 5685. (d) Stojiljkovic,
́
A.;
(29) Oae, S. Organic Sulfur Chemistry: Structure and Mechanism; CRC
Press; Boca Raton, FL, 1991; pp 203.
Andrejevic, V.; Mihailovi, M. L. Tetrahedron 1967, 23, 721.
́
(13) (a) Nicolaou, K. C.; Mathison, C. J. N. Angew. Chem., Int. Ed.
2005, 44, 5992. (b) P. Griffith, W.; Reddy, B.; G. F. Shoair, A.;
Suriaatmaja, M.; J. P. White, A.; J. Williams, D. J. Chem. Soc., Dalton
Trans. 1998, 2819. (c) Yamazaki, S.; Yamazaki, Y. Bull. Chem. Soc. Jpn.
1990, 63, 301.
(30) (a) Crabtree, R. H. Chem. Rev. 2012, 112, 1536. (b) Widegren,
J. A.; Finke, R. G. J. Mol. Catal. A: Chem 2003, 198, 317.
(31) Bayram, E.; Finke, R. G. ACS Catalysis 2012, 2, 1967.
(32) Water also acts as a catalyst poison. For instance, in the presence
of 0.25 equiv H2O, 42% yield of n-octanenitrile was noted.
Accordingly, the reproducibility of catalysis was highly susceptible to
water content. All amines were subjected to an identical protocol for
drying (see Supporting Information), and highly reproducible yields
were obtained.
(33) Attempts to elucidate the catalytic species under stoichiometric
amine or nitrile conditions were complicated by the presence of
paramagnetic species that were generated during the reaction.
(34) See Figure S2 for the reaction profile of n-octylamine
dehydrogenation catalyzed by 1. Although 65% conversion was
noted within 6 h for n-octylamine, 24 h was used for all amine
substrates to ensure maximum conversion.
(14) (a) Kim, J.; Stahl, S. S. ACS Catal. 2013, 3, 1652. (b) Aiki, S.;
Taketoshi, A.; Kuwabara, J.; Koizumi, T.-a.; Kanbara, T. J. Organomet.
Chem. 2011, 696, 1301. (c) Zhang, Y.; Xu, K.; Chen, X.; Hu, T.; Yu,
Y.; Zhang, J.; Huang, J. J. Catal. Commun. 2010, 11, 951. (d) Maeda,
Y.; Nishimura, T.; Uemura, S. Bull. Chem. Soc. Jpn. 2003, 76, 2399.
(e) Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2003, 42, 1480.
(f) Mori, K.; Yamaguchi, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K.
Chem. Commun. 2001, 461. (g) Bailey, A. J.; James, B. R. Chem.
Commun. 1996, 2343. (h) Tang, R.; Diamond, S. E.; Neary, N.; Mares,
F. J. Chem. Soc. Chem. Commun. 1978, 562.
(15) (a) Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.;
Junge, H.; Gladiali, S.; Beller, M. Nature 2013, 495, 85. (b) Rodriguez-
Lugo, R. E.; Trincado, M.; Vogt, M.; Tewes, F.; Santiso-Quinones, G.;
Grutzmacher, H. Nature Chem. 2013, 5, 342. (c) Spasyuk, D.; Smith,
S.; Gusev, D. G. Angew. Chem., Int. Ed. 2012, 51, 2772. (d) Nielsen,
M.; Junge, H.; Kammer, A.; Beller, M. Angew. Chem., Int. Ed. 2012, 51,
5711. (e) Marr, A. C. Catal. Sci. Technol. 2012, 2, 279. (f) Prades, A.;
Peris, E.; Albrecht, M. Organometallics 2011, 30, 1162. (g) Johnson, T.
C.; Morris, D. J.; Wills, M. Chem. Soc. Rev. 2010, 39, 81.
(h) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
(16) Yoshida, T.; Okano, T.; Otsuka, S. J. Chem. Soc. Chem. Commun.
1979, 870.
(35) Note that primary aldimines are unstable under our reaction
conditions, see reference: Lee, J. H.; Gupta, S.; Jeong, W.; Rhee, Y. H.;
Park, J. Angew. Chem., Int. Ed. 2012, 51, 10851.
(36) A large excess of n-octanenitrile was used to replicate the nitrile
concentration under standard reaction conditions. Note that using 1 or
2 equiv n-octanenitrile did not affect the overall yield.
(37) Crabtree, R. H. Energy Environ. Sci. 2008, 1, 134.
(17) (a) Bernskoetter, W. H.; Brookhart, M. Organometallics 2008,
27, 2036. (b) Wang, Z.; Belli, J.; Jensen, C. M. Faraday Discuss. 2011,
151, 297. (c) Gu, X.-Q.; Chen, W.; Morales-Morales, D.; Jensen, C. M.
J. Mol. Catal. A: Chem. 2002, 189, 119.
(18) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. Organometallics
2013, 32, 2046.
(19) (a) Wu, J.; Talwar, D.; Johnston, S.; Yan, M.; Xiao, J. Angew.
Chem., Int. Ed. 2013, 52, 6983. (b) Schumperli, M. T.; Hammond, C.;
Hermans, I. ACS Catal. 2012, 2, 1108. (c) Luca, O. R.; Wang, T.;
Konezny, S. J.; Batista, V. S.; Crabtree, R. H. New J. Chem. 2011, 35,
998. (d) Yi, C. S.; Lee, D. W. Organometallics 2009, 28, 947.
(20) When 5 mol % of 1 was used, n-octylamine was converted to n-
octanenitrile in 80% yield (see Table S1 and Figure S1). While this
small increase in conversion was noted with higher catalyst loadings,
our standard reaction conditions employed 1 mol %.
(21) Kitamura, M., Noyori, R. Hydrogenation and Transfer
Hydrogenation. In Ruthenium in Organic Synthesis; Murahashi, S.-I.,
Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp 3.
D
dx.doi.org/10.1021/ja409223a | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX