4
Tetrahedron Letters
Plausible mechanism for Fe
synthesis of nitriles from aldehydes is shown in Sheme 2. Fe
CTAB NPs activate carbonyl carbon for nucleophilic attack by
hydroxylamine. Subsequent deprotonation followed by loss of
water molecule gives rise to the formation of oxime derivatives.
Finally, Fe O -CTAB NPs participate in expulsion of water
3 4
molecule from oxime to give desire product and itself get
regenerated at the end of reaction for consecutive cycle.
3
O
4
-CTAB NPs catalyzed one-pot
4.
Beletskaya, I. P.; Sigeev, A. S.; Peregudov,A. S.; Petrovskii, P. V.
J. Orgm. Chem. 2004, 689, 3810-3812.
Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779-
3 4
O -
5
6
.
.
7
94.
Friedman, L.; Shechter, H. J. Org. Chem. 1960, 25, 877-879.
Bini, L.; Muller, C.; Wilting, J.; Chrzanowski, L.; Spek, A. L.;
Vogt, D. J. Am. Chem. Soc. 2007, 129, 12622-12623.
Lindley, J. Tetrahedron 1984, 40, 1433-1456.
(a) Yin, W.; Wang, C.; Huang, Y. Org. Lett. 2013, 15, 1850-1853;
7.
8
9
.
.
(b) Rad, M. N. S.; Khalafi-Nezhad, A.; Behrouz, S.; Faghihi, M.
A. Tetrahedron Lett. 2007, 48, 6779-6784; (c) Chen, F-E.; Li, Y-
Y.; Xu, M.; Jia, H-Q. Synthesis 2002, 1804-1806.
N
O
1
1
0. (a) Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2003, 42,
1480-1483; (b) Ghorbani-Vaghei, R.; Veisi, H. Synthesis 2009,
H
NH2OH
-
H2O
9
45-950.
1. Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Org. Lett.
009, 11, 2461-2464.
2
O
H
12. (a) Lamani, M.; Prabhu, K. R. Angew. Chem. Int. Ed. 2010, 49,
6622-6625; (b) He, J.; Yamaguchi, K.; Mizuno, N. J. Org. Chem.
NH2OH
O
H
N
H
2
011, 76, 4606-4610.
1
3. (a) Song, Y.; Shen, D.; Zhang, Q.; Chen, B.; Xu, G. Tetrahedron
Lett. 2014, 55, 639-641; (b) Li, D.; Shi, F.; Guo, S.; Deng, Y.
Tetrahedron Lett. 2005, 46, 671-674; (c) Rad, M. N. S.; Khalafi-
Nezhad, A.; Behrouz, S.; Amini, Z.; Behrouz, M. Synth. Commun.
2010, 40, 2429-2440; (d) Yadav, L. D. S.; Srivastava, V. P.; Patel,
R. Tetrahedron Lett. 2009, 50, 5532-5535; (e) Augustine, J. K.;
Kumar, R.; Bombrun, A.; Mandal, A. B. Tetrahedron Lett. 2011,
H
O
-H2O
-H+
OH
N
H
Scheme 2. Plausible mechanism for the transformation of aldehyde into
nitrile
5
2, 1074-1077; (f) Tambara, K.; Pantos, G. D. Org. Biomol.
Chem. 2013, 11, 2466-2472; (g) Sengupta, R.; Weinreb, S. M.
Synthesis 2012, 2933-2937.; (h) Rad, M. N. S; Behrouz, S.;
Nekoei, A-R. Synlett 2012, 1191-1198; (i) Jiang, N.; Ragauskas,
A. J. Tetrahedron Lett. 2010, 51, 4479-4481.
Conclusion
3 4
In conclusion, we have developed Fe O -CTAB NPs catalyzed an
1
1
4. Xu, S.; Cai, T.; Yun, Z. Synlett 2016, 221-224.
5. Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. Org.
Lett. 2011, 13, 648-651.
6. Qin, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 15893-15895.
17. Zhou, W.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48,
efficient protocol for one-pot conversion of aldehydes into
nitriles from aldehydes (0.5 mmol), hydroxylamine
hydrochloride (0.75 mmol) in dry DMF (5ml) under reflux
condition. Advantage of this protocol includes the use of
inexpensive and relatively less toxic nanocatalyst, excellent yield,
easy reaction setup and easy work-up process.
1
7094-7097.
1
1
8. Zhou, W.; Xu, J.; Zhang, L.; Jiao, N. Org. Lett. 2010, 12, 2888-
891.
2
9. (a) An, X-D.; Yu, S. 2015, 17, 5064-5067.; (b) Shargi, H.; Sarvari,
M. H. Synthesis 2003, 243-246; (c) Zhu, J- L.; Lee, F-Y.; Wu, J-
D.; Kuo, C-W.; Shia, K-S. Synlett 2007, 1317-1319; (d)
Augustine, J. K.; Atta, R. N.; Ramappa, B. K.; Boodappa, C.
Synlett 2009, 3378-3382; (e) Sridhar, M.; Reddy, M. K. K.;
Sairam, V. V.; Raveendra, J.; Godala, K. R.; Narsaiah, C.;
Ramanaiah, B. C.; Reddy, C. S. Tetrahedron Lett. 2012, 53, 3421-
Acknowledgement
One of the authors (B.S) is thankful to BSR, UGC-New Delhi for
financial support.
Supplementary Material
3
424; (f) Coşkun, N.; Arikan, N. Tetrahedron. 1999, 55, 11943-
1
1948; (g) Erman, M. B. J.; Snow, W.; Williams, M. J.
Supplementary data associated with this article can be found, in
the online version, at xxxxxxxxxxxxxxxxxxxx
Tetrahedron Lett. 2000, 41, 6749-6752; (h) Carmeli, M.; Shefer,
N.; Rozen, S. Tetrahedron Lett. 2006, 47, 8969-8972; (i) Telvekar,
V. N.; Patel, K. N.; Kundaikar, H. S.; Chaudhari, H. K.
Tetrahedron Lett. 2008, 49, 2213-2215; (j) Sharghi, H.; Sarvari,
M. H. Tetrahedron 2002, 58, 10323-10328; (k) Reddy, K. R.;
Maheswari, C. U.; Venkateshwar, M.; Prashanthi, S.; Kantam,
M. L. Tetrahedron Lett. 2009, 50, 2050-2053.
References
1
.
Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C.
J. Med. Chem. 2010, 53, 7902-7917; (b) Sweeney, A. M.;
Grosche, P.; Ellis, D.; Combrink, K.; Erbel, P.; Hughes, N.;
Sirockin, F.; Melkko, S.; Bernardi, A.; Ramage, P.; Jarousse, N.;
Altmann, E. ACS Med. Chem. Lett. 2014, 5, 937-941; (c) Frizler,
M.; Lohr, F.; Furtmann, N.; Kläs, J.; Gutschow, M. J. Med.
Chem. 2011, 54, 396-400; (d) Chuck, C-P.; Chen, C.; Ke, Z.;
Wan, D. C.; Chow, H-F.; Wong, K-B. Eur. J. Med. Chem. 2013,
2
0. (a) Chen, H-P.; Chen, M-H.; Tung, F-I.; Liu,T-Y.; J. Med. Chem.
2
015, 58, 3704-3719; (b) Wei, H.; Insin, N.; Lee, J.; Han, H-S.;
Cordero, J. M.; Liu, W.; Bawendi, M. G. Nano Lett. 2012, 12, 22-
5; (c) Jiang, S.; Eltoukhy, A. A.; Love, K. T.; Langer, R.;
2
Anderson, D. G. Nano Lett. 2013, 13, 1059-1064; (d) Lee, N.;
Choi, Y.; Lee, Y.; Park, M.; Moon, W. K.; Choi, S. H.; Hyeon, T.
Nano Lett. 2012, 12, 3127-3131; (e) Hultman, K. L.; Raffo, A. J.;
Grzenda, A. L., Harris, P. E.; Brown, T. R.; O’Brien, S. Acs.
Nano. 2008, 2, 477-484.; (f) Cantillo, D.; Moghaddam, M. M.;
Kappe, C. O. J. Org. Chem. 2013, 78, 4530-4542; (g) Riente, P.;
Yadav, J.; Pericas. M-A. Org. Lett. 2012, 14, 3668-3671; (h)
Sonnenberg, J. F.; Coombs, N.; Dube, P. A.; Morris. R. H. J. Am.
Chem. Soc. 2012, 134, 5893-5899; (i) Basavegowda, N.; Mishra,
K.; Lee. Y. R. Rsc. adv. 2014, 4, 61660-61666.
5
9, 1-6.
2
3
.
.
(a) Larock, R. C. Comprehensive Organic Transformations; VCH:
New York 1989, 819; (b) Houben-Weyl, C.; Grundmann,
Methodender Organischen Chemie. Falbe; J. Ed. Georg Thieme
Verlag: Stuttgart, 1985, E5, 1313.
(a) Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Org.
Lett. 2014, 16, 1060-1063; (b) Muñoz, J. M.; Alcázar, J.; Hoz, A.;
Díaz-Ortiz, A. Tetrahedron Lett. 2011, 52, 6058-6060; (c)
Caddick, S.; Haynes, A. K. K.; Judd, D. B.; Williams, M. R. V.
Tetrahedron Lett. 2000, 41, 3513-3516; (d) Heller, B.;
Sundermann, B.; Buschmann, H.; Drexler, H-J.; You, J.;
Holzgrabe, U.; Heller, E.; Oehme, G. J. Org. Chem. 2002, 67,
2
1. (a) Trost, B. M. Science 1991, 254, 1471-1477; (b) Jenck, J. F.;
Agterberg, F.; Droescher, M. J. Green Chem. 2004, 6, 544-556.
2. Ghosh, P.; Subba, R. Tetrahedron Lett. 2013, 54, 4885-4887.
3. Tan, W.L.; Abu Bakar, M. J. Phys. Sci. 2006, 17, 37-50.
4. General procedure for the synthesis of nitrile from aldehyde:
Aldehyde (0.5 mmol) and hydroxylamine hydrochloride (0.75
2
2
2
4
2
414-4422; (e) Bosch, L.; Vilarrasa, J. Angew. Chem. Int. Ed.
007, 46, 3926-3930; (f) Aureggi, V.; Sedelmeier, G.; Angew.
Chem. Int. Ed. 2007, 46, 8440-8444; (g) Aldhoun, M.; Massi, A.;
Dondoni, A. J. Org. Chem. 2008, 73, 9565-9575; (h) Bokach, N.
A.; Kuznetsov, M. L.; Haukka, M.; Ovcharenko, V. I.; Tretyakov,
E. V.; Kukushkin, V. Y. Organometallics. 2009, 28, 1406-1413;
mmol) were added successively to a solution of Fe
3 4
O -CTAB NPs
(5.7 mg) i.e Fe (1.8 mol%) in 5 ml dry DMF. The mixture was
3 4
O
reflux for appropriate time (table 3). The progress of the reaction
was monitored by TLC. After completion of the reaction, the
solution was poured into 100 ml water and extract with ethyl
acetate, washed several times with water. The combined organic
(i) Cohen, M. A.; Sawden, J. N.; Turner, J. Tetrahedron Lett.
1
2
990, 31, 7223-7226; (j) Bhattacharyya, S.; Pathak, U. Synthesis.
015, 3553-3560.