Please do not adjust margins
Catalysis Science & Technology
Page 7 of 7
DOI: 10.1039/C8CY00901E
Catalysis Science & Technology
ARTICLE
6.
J. P. Barham, G. Coulthard, R. G. Kane, N. Delgado, M. P. 35.
Z. Yang, J. Biotechnol., 2009, 144, 12-22.
John and J. A. Murphy, Angew. Chem., Int. Ed., 2016, 55, 36.
4492-4496.
L. Zhang, H. Yang and L. Jiao, J. Am. Chem. Soc., 2016, 138,
T. López-León, M. J. Santander-Ortega, J. L. Ortega-
Vinuesa and D. Bastos-González, J. Phys. Chem. C, 2008,
112, 16060-16069.
7.
8.
9.
7151-7160.
37.
V. Merk, C. Rehbock, F. Becker, U. Hagemann, H.
Nienhaus and S. Barcikowski, Langmuir, 2014, 30, 4213-
4222.
X. Ma, S. Liu, Y. Liu, G. Gu and C. Xia, Sci. Rep., 2016, 6,
25068 (25011 pages).
H. Yi, A. Jutand and A. Lei, Chem. Commun., 2015, 51, 545-
548.
H. Yang, L. Zhang and L. Jiao, Chem. - Eur. J., 2017, 23, 65- 38.
69.
10.
11.
J. F. Bunnett, Acc. Chem. Res., 1992, 25, 2-9.
S. Murarka, J. Mobus, G. Erker, C. Muck-Lichtenfeld and A.
Studer, Org. Biomol. Chem., 2015, 13, 2762-2767.
D. D. Hennings, T. Iwama and V. H. Rawal, Org. Lett.,
1999, 1, 1205-1208.
A. Jutand and A. Mosleh, J. Org. Chem., 1997, 62, 261-
274.
A. Monopoli, V. Calò, F. Ciminale, P. Cotugno, C. Angelici,
N. Cioffi and A. Nacci, J. Org. Chem., 2010, 75, 3908-3911.
L. Wang, Y. Zhang, L. Liu and Y. Wang, J. Org. Chem., 2006,
71, 1284-1287.
V. Calò, A. Nacci, A. Monopoli and P. Cotugno, Chem. Eur.
J., 2009, 15, 1272-1279.
A. Feiz, A. Bazgir, A. M. Balu and R. Luque, Sci. Rep., 2016, 42.
6, 32719 (32716 pages).
W. Liu, X. Yang, Y. Gao and C.-J. Li, J. Am. Chem. Soc., 43.
2017, 139, 8621–8627.
I. Favier, D. Madec, E. Teuma and M. Gómez, Curr. Org. 44.
Chem., 2011, 15, 3127-3174.
39.
In the absence of hydroquinone, the bis-aryl product 4 is
obtained as minor product together with a relative
important amount of hydrodehalogenated arene 5 (24%
conversion with a selectivity of 4:5 = 3:7).
A. Bouleghlimat, M. Othman, L. Lagrave, S. Matsuzawa, Y.
Nakamura, S. Fujii and N. Buurma, Catalysts, 2017, 7, 280.
Amberlite IRA-900 chloride form was conditioned through
a column with 1 M KOH (400 mL total volume in 6 h) to
trigger chloride to hydroxide exchange. The resin was
then washed with deionised H2O until no precipitate was
formed in the eluates upon treatment with AgNO3. The
stationary phase was then dried under reduced pressure
prior to use.
T.-H. Tran and T.-D. Nguyen, Colloid. Surface B, 2011, 88,
1-22.
F. Chahdoura, I. Favier and M. Gómez, Chem. Eur. J. ,
2014, 20, 10884-10893.
V. Sable, K. Maindan, A. R. Kapdi, P. S. Shejwalkar and K.
Hara, ACS Omega, 2017, 2, 204-217.
12.
13.
14.
15.
16.
17.
18.
19.
40.
41.
20.
21.
D. Pla and M. Gómez, ACS Catal., 2016, 6, 3537-3552.
T. Dang-Bao, D. Pla, I. Favier and M. Gómez, Catalysts,
2017, 7, 207.
45.
The analogous analysis of the catalyst CataCXium after 15
min reaction time in toluene revealed the formation of Pd
aggregates displaying a lesser extent of Pd NPs. The lesser
extent intrinsic metal surface available is in good
agreement with the lack of reactivity of this system.
The radical hydrodehalogenation of aryl bromides has
been recently proved by Studer and co-workers using NaH
and 1,4-dioxane.
T. Hokamp, A. Dewanji, M. Lübbesmeyer, C. Mück-
Lichtenfeld, E.-U. Würthwein and A. Studer, Angew.
Chem. Int. Ed., 2017, 56, 13275-13278.
The direct electron transfer from hydroquinone to the
substrate is precluded due to its high endothermic nature
(ca. 1.7 eV, 170 kJ/mol).
Fluorobenzene and α,α,α-trifluorotoluene had a slightly
inhibitory effect due to biphasic nature of the reactions,
but the bis-aryl homocoupling product was obtained in
roughly in 25% yield (32% conversion). However, the use
of 10 equiv. excess bis(trifluoromethyl)benzene
hampered almost completely the reaction conversion and
unreacted starting material was recovered in 94%.
C.-L. Sun, H. Li, D.-G. Yu, M. Yu, X. Zhou, X.-Y. Lu, K. Huang,
S.-F. Zheng, B.-J. Li and Z.-J. Shi, Nat. Chem., 2010, 2,
1044-1049.
22.
I. Favier, D. Pla and M. Gómez, Catal. Today, 2017, DOI:
10.1016/j.cattod.2017.1006.1026.
DOI:
46.
23.
24.
25.
26.
27.
F. Chahdoura, C. Pradel and M. Gómez, Adv. Synth. Catal.,
2013, 355, 3648-3660.
A. Reina, C. Pradel, E. Martin, E. Teuma and M. Gómez, 47.
RSC Adv., 2016, 6, 93205-93216.
S. E. Lohse, N. D. Burrows, L. Scarabelli, L. M. Liz-Marzán
and C. J. Murphy, Chem. Mater., 2014, 26, 34-43.
N. Nalajala, A. Chakraborty, B. Bera and M. Neergat,
Nanotechnology, 2016, 27, 065603 (065612 pages).
B. T. Sneed, M. C. Golden, Y. Liu, H. K. Lee, I. Andoni, A. P. 49.
Young, G. McMahon, N. Erdman, M. Shibata, X. Y. Ling
and C.-K. Tsung, Surf. Sci., 2016, 648, 307-312.
P. J. Hendra, J. Chem. Soc. A, 1967, DOI:
10.1039/J19670001298, 1298-1301.
R. A. Nyquist and R. O. Kagel, Handbook of Infrared and
Raman Spectra of Inorganic Compounds, Academic Press,
48.
28.
29.
InC, London, 1971.
50.
30.
31.
32.
A. Carrasquillo Jr., J.-J. Jeng, R. J. Barriga, W. F. Temesghen
and M. P. Soriaga, Inorg. Chim. Acta., 1997, 255, 249-254.
S. S. Zinovyev, A. Perosa and P. Tundo, J. Catal., 2004,
226, 9-15.
M. A. Aramendía, V. Borau, I. M. García, C. Jiménez, A.
Marinas, J. M. Marinas and F. J. Urbano, C. R. Acad. Sci. II
C 2000, 3, 465-470.
33.
34.
F. Hofmeister, Arch. Exp. Pathol. Pharmakol., 1888, 25, 1-
30.
Claudio G. Rodrigues, Dijanah C. Machado, Annielle M. B.
da Silva, Janilson J. S. Júnior and Oleg V. Krasilnikov,
Biophys. J., 100, 2929-2935.
This journal is © The Royal Society of Chemistry 2018
Catal. Sci. Technol., 2018, 00, 1-7 | 7
Please do not adjust margins