Organometallics
Article
1996, 20, 2343−2344. (c) Ray, R.; Chandra, S.; Yadav, V.; Mondal,
P.; Maiti, D.; Lahiri, G. K. Ligand Controlled Switchable Selectivity in
Ruthenium Catalyzed Aerobic Oxidation of Primary Amines. Chem.
Commun. 2017, 53, 4006−4009. (d) Yamaguchi, K.; Mizuno, N.
Efficient Heterogeneous Aerobic Oxidation of Amines by a Supported
Ruthenium Catalyst. Angew. Chem., Int. Ed. 2003, 42, 1480−1483.
(12) (a) Muthaiah, S.; Hong, S. H. Acceptorless and Base-Free
Dehydrogenation of Alcohols and Amines using Ruthenium-Hydride
Complexes. Adv. Synth. Catal. 2012, 354, 3045−3053. (b) Wang, Q.;
Chai, H.; Yu, Z. Acceptorless Dehydrogenation of N-Heterocycles
and Secondary Alcohols by Ru(II)-NNC Complexes Bearing a
Pyrazoyl-indolyl-pyridine Ligand. Organometallics 2018, 37 (4), 584−
591.
Substitution on the Utility of Piperidines and Octahydroindoles for
Reversible Hydrogen Storage. New J. Chem. 2008, 32, 1027−1037.
(c) Moores, A.; Poyatos, M.; Luo, Y.; Crabtree, R. H. Catalysed Low
Temperature H2 Release from Nitrogen heterocycles. New J. Chem.
2006, 30, 1675−1678. (d) Schwarz, D. E.; Cameron, T. M.; Hay, P.
J.; Scott, B. L.; Tumas, W.; Thorn, D. L. Hydrogen Evolution from
Organic Hydrides. Chem. Commun. 2005, 5919−5921. (e) Clot, E.;
Eisenstein, O.; Crabtree, R. H. Computational Structure−Activity
Relationships in H2 storage: How placement of N atoms Affects
Release Temperatures in Organic Liquid Storage Materials. Chem.
Commun. 2007, 2231−2233.
(20) (a) Dreyfors, J. M.; Jones, S. B.; Sayed, Y. Hexamtheylenetetr-
amine: A Review. Am. Ind. Hyg. Assoc. J. 1989, 50 (11), 579−585.
(b) Ahmad, N.; Robinson, S. D.; Uttley, M. F. Transition-Metal
Complexes Containing Phosphorus Ligands. Part VII. New and
Improved Syntheses of Some Triphenylphosphine Complexes of
Rhodium, Iridium, Ruthenium, and Osmium. J. Chem. Soc., Dalton
Trans. 1972, 843−847. (c) Prechtl, M. H. G.; Ben-David, Y.; Giunta,
(13) (a) Tseng, K-N. T.; Rizzi, A. M.; Szymczak, N. K. Oxidant-Free
Conversion of Primary Amines to Nitriles. J. Am. Chem. Soc. 2013,
135, 16352−16355. (b) Hale, L. V. A.; Malakar, T.; Tseng, K-N.T.;
Zimmerman, P. M.; Paul, A.; Szymczak, N. K. The Mechanism of
Acceptorless Amine Double Dehydrogenation by N,N,N-Amide
Ruthenium(II) Hydrides: A Combined Experimental and Computa-
tional Study. ACS Catal. 2016, 6, 4799−4813. (c) Dutta, I.; Yadav, S.;
̈
D.; Busch, S.; Taniguchi, Y.; Wisniewski, W.; Gorls, H.; Mynott, R. J.;
Theyssen, N.; Milstein, D.; Leitner, W. Synthesis and Characterisation
of Nonclassical Ruthenium Hydride Complexes Containing Chelating
Bidentate and Tridentate Phosphine Ligands. Chem. - Eur. J. 2007, 13,
1539−1546. (d) Chouzier, S.; Vrinat, M.; Cseri, T.; Roy-Auberger,
M.; Afanasiev, P. HDS and HDN Activity of (Ni,Co)Mo Binary and
Ternary Nitrides Prepared by Decomposition of Hexamethylenetetr-
amine complexes. Appl. Catal., A 2011, 400, 82−90 and references
therein. . (e) Yao, Z.; Wang, G.; Shi, Y.; Zhao, Y.; Jiang, J.; Zhang, Y.;
Wang, H. One-step Synthesis of Nickel and Cobalt Phosphide
Nanomaterials via Decomposition of Hexamethylenetetramine-
containing precursors. Dalton Trans. 2015, 44, 14122−14129.
̈
Sarbajna, A.; De, S.; Holscher, M.; Leitner, W.; Bera, J. K. Double
Dehydrogenation of Primary Amines to Nitriles by a Ruthenium
Complex Featuring Pyrazole Functionality. J. Am. Chem. Soc. 2018,
140, 8662−8666.
(14) (a) Ananikov, V. P. Understanding Organometallic Reaction
Mechanisms and Catalysis: Computational and Experimental Tools;
Wiley-VCH: 2015. (b) Hong, L.; Sun, W.; Yang, D.; Li, G.; Wang, R.
Additive Effects on Asymmetric Catalysis. Chem. Rev. 2016, 116,
́
4006−4123. (c) Grzybowska-Swierkosz, B. Effect of Additives on the
Physiochemical and Catalytic Properties of Oxide Catalysts in
Selective Oxidation Reactions. Top. Catal. 2002, 21, 35−46.
(d) Kwak, Y.; Matyjaszewski, K. ARGET ATRP of Methyl
methacrylate in the Presence of Nitrogen-Based Ligands as reducing
agents. Polym. Int. 2009, 58, 242−247.
(21) (a) Vieille-Petit, L.; Therrien, B.; Suss-Fink, G. Synthesis and
̈
Molecular Structure of the Trinuclear Ruthenium Cluster Cations
[H3Ru3(C6H6)(C6H2Me4)2(O)]+ and [H3Ru3{C6H5(CH2)2OH}-
(C6H2Me4)2(O)]+. Inorg. Chim. Acta 2003, 355, 394−398.
(15) (a) Hatfield, G. R.; Maciel, G. E. Solid-state NMR study of the
Hexamethylenetetramine Curing of Phenolic Resins. Macromolecules
1987, 20 (3), 608−615. (b) Yi, W.-B.; Cai, C. Synthesis of RDX by
Nitrolysis of Hexamethylenetetramine in Fluorous Media. J. Hazard.
Mater. 2008, 150 (3), 839. (c) Kaihua, J.; Shuhong, B. Coordination
Compounds of Hexamethylenetetramine with Metal Salts: A Review.
Johnson Matthey Technol. Rev. 2018, 62 (1), 89−106 and references
therein. . (d) Zheng, S.-L.; Tong, M.-L.; Chen, X.-M. Silver(I)-
Hexamethylenetetramine Molecular Architecture from Self Assembly
to Designed Assembly. Coord. Chem. Rev. 2003, 246 (1−2), 185.
(e) Cao, C.; Lu, Z.; Cai, Z.; Pang, G.; Shi, Y. Cheap Cu(I)/
Hexamethylenetetramine (HMTA) Catalytic System for C-N
Coupling Reactions. Synth. Commun. 2012, 42, 279−284.
(16) (a) Caillault, X.; Pouillaoua, Y.; Barrault, J. Synthesis of R2N-R′
Dissymmetric Amines from Nitriles and Hexamethylenetetramine
Over Nickel Catalysts. J. Mol. Catal. A: Chem. 1995, 103, 117−123.
(b) Dreyfors, J. M.; Jones, S. B.; Sayed, Y. Hexamethylenetetramine: a
review. Am. Ind. Hyg. Assoc. J. 1989, 50 (11), 579−585. (c) Cheng,
C.; Gong, S.; Fu, Q.; Shen, L.; Liu, Z.; Qiao, Y.; Fu, C.
Hexamethylenetetramine as both a Ligand and a Reducing agent in
AGET atom Transfer Radical Batch Emulsion Polymerization. Polym.
Bull. 2011, 66, 735−746.
(17) Xing, Z.; Ju, Z.; Zhao, Y.; Zhu, Y.; Qiang, Y.; Qian, Y. One-pot
hydrothermal synthesis of Nitrogen-doped graphene as high-perform-
ance anode materials for lithium ion batteries. Sci. Rep. 2016, 6,
26146.
(18) (a) Bhatia, A.; Muthaiah, S. Well-Defined Ruthenium Complex
for Acceptorless Alcohol Dehydrogenation in Aqueous Medium.
ChemistrySelect 2018, 3, 3737−3741. (b) Bhatia, A.; Muthaiah, S.
Synthesis of a Water-Soluble Ruthenium Complex and Its Catalytic
Activity for Acceptorless Alcohol Dehydrogenation in Aqueous
Medium. Synlett 2018, 29, 1644−1648.
(19) (a) Crabtree, R. H. Hydrogen Storage in Liquid Organic
heterocycles. Energy Environ. Sci. 2008, 1, 134. (b) Cui, Y.; Kwok, S.;
Bucholtz, A.; Davis, B.; Whitney, R. A.; Jessop, P. G. The Effect of
(b) Meister, G.; Rheinwald, G.; Stoeckli-Evans, H.; Suss-Fink, G.
̈
Hydrogen Activation by Arene Ruthenium Complexes in Aqueous
Solution. Part 2.′ Build-up of Cationic Tri- and Tetra-nuclear
Ruthenium Clusters with Hydrido Ligands. J. Chem. Soc., Dalton
Trans. 1994, 3215−3223. (c) Jahncke, M.; Neels, A.; Stoeckli-Evans,
H.; Su
̈
ss-Fink, G. Reactions of the Cationic Complex [(η6-
C6Me6)2Ru2(μ2-H)3]+ with Nitrogen-Containing Heterocycles in
Aqueous Solution. J. Organomet. Chem. 1998, 561, 227−235.
(22) Reguillo, R.; Grellier, M.; Vautravers, N.; Vendier, L.; Sabo-
Etienne, S. Ruthenium-Catalyzed Hydrogenation of Nitriles: Insights
into the Mechanism. J. Am. Chem. Soc. 2010, 132, 7854−7855.
(23) (a) Rokade, B. V.; Malekar, S. K.; Prabhu, K. R. A Novel
Oxidative Transformation of Alcohols to Nitriles: an Efficient Utility
of Azides as a Nitrogen Source. Chem. Commun. 2012, 48, 5506−
5508. (b) Feng, Q.; Song, Q. Copper-Catalyzed Decarboxylative C-N
Triple Bond Formation: Direct Synthesis of Benzonitriles from
Phenylacetic Acids Under O2 Atmosphere. Adv. Synth. Catal. 2014,
356, 1697−1702. (c) Zhuang, Y.-J.; Liu, J.; Kang, Y.-B. Tin or
Gallium-Catalyzed Cyanide-Transition Metal-Free Synthesis of
Nitriles from Aldehydes or Oximes. Tetrahedron Lett. 2016, 57,
5700−5702. (d) Tao, C.; Wang, B.; Sun, L.; Liu, Z.; Zhai, Y.; Zhang,
X.; Wang, J. Merging Visible-light photo redox and Copper Catalysis
in Catalytic Aerobic Oxidation of Amines to Nitriles. Org. Biomol.
Chem. 2017, 15, 328−332. (e) Grossman, O.; Gelmam, D. Novel
Trans-Spanned Palladium Complexes as Efficient Catalysts in Mild
and Amine-Free Cyanation of Aryl Bromides under Air. Org. Lett.
2006, 8 (6), 1189−1191. (f) Damodara, R.; Arundhathi, D.; Likhar,
P. R. Copper Nanoparticles from Copper Aluminum Hydrotalcite: An
Efficient Catalyst for Acceptor- and Oxidant-Free Dehydrogenation of
Amines and Alcohols. Adv. Synth. Catal. 2014, 356, 189−198.
(g) Kim, J.; Stahl, S. S. Cu/Nitroxyl-Catalyzed Aerobic Oxidation of
Primary Amines into Nitriles at Room Temperature. ACS Catal. 2013,
̈
3, 1652−1656. (h) Dutta, I.; Yadav, S.; Sarbajna, A.; De, S.; Holscher,
M.; Leitner, W.; Bera, J. K. Double Dehydrogenation of Primary
G
Organometallics XXXX, XXX, XXX−XXX