126
B. W. Yoo et al. / Tetrahedron Letters 47 (2006) 125–126
Table 1. Deoxygenation of amine-N-oxides with Mo(CO)6
In conclusion, we believe that the use of Mo(CO)6 offers
an attractive alternative to the currently available meth-
ods for the deoxygenation of amine-N-oxides to the cor-
responding amines. Further studies to develop other
new reactions using Mo(CO)6 are currently in progress.
Entry Substrate
Product
Time Yields
(h)
(%)a
1
2
3
Pyridine-N-oxide
Quinoline-N-oxide
Isoquinoline-N-oxide Isoquinoline
Pyridine
Quinoline
1.0
3.0
4.0
96
92
85
CH3
References and notes
CH3
4
5
6
1.0
2.0
2.0
90
95
92
N
N
1. Ochiai, E. In Aromatic Amine Oxides; Elsevier: Amster-
dam, 1967; pp 184–209.
2. (a) Emerson, T. R.; Ress, C. W. J. Chem. Soc. 1962, 1917;
(b) Howard, E., Jr.; Olszewski, W. F. J. Am. Chem. Soc.
1959, 81, 1483.
3. (a) Malinoswaki, M. Synthesis 1987, 732; (b) Balicki, R.
Chem. Ber. 1990, 647; (c) Balicki, R.; Kaczmarek, L.;
Malinnowski, M. Synth. Commun. 1989, 19, 897; (d) Yoo,
B. W.; Choi, J. W.; Kim, D. Y.; Hwang, S. K.; Choi, K. I.;
Kim, J. H. Bull. Korean Chem. Soc. 2002, 23, 797.
4. Balicki, R.; Cybulski, M.; Maciejewski, G. Synth. Com-
mun. 2003, 23, 4137.
5. Ilias, M. H.; Barman, D. C.; Prajapati, D.; Sandhu, J. S.
Tetrahedron Lett. 2002, 43, 1877.
6. (a) Kozuka, S.; Akasaka, K.; Furumai, T.; Dae, S. Chem.
Ind. (London) 1974, 452; (b) Jousseaume, B.; Chanson, E.
Synthesis 1987, 55.
7. Katritzky, A. R.; Monro, A. M. S. J. Chem. Soc. 1958,
1263.
8. Zhang, Y.; Lin, R. Synth. Commun. 1987, 17, 329.
9. Ilankumaran, P.; Chandrasekara, S. Tetrahedron Lett.
1995, 36, 4881.
O
CN
CN
N
N
O
Br
Br
N
N
O
N
7
8
1.0
2.0
85
83
Cl
Cl
N
N
N
O
OH
OH
N
O
CO2CH3
CONH2
CO2CH3
CONH2
10. Yadav, J. S.; Subba Reddy, B. V.; Muralidhar Reddy, M.
Tetrahedron Lett. 2000, 41, 2663.
N
9
1.0
2.0
82
80
O
11. (a) Harvey, D. F.; Sigano, D. M. Chem. Rev. 1996, 96,
271, and references cited therein; (b) Harvey, D. F.;
Brown, M. F. Tetrahedron Lett. 1990, 31, 2529; (c)
Barluenga, J.; Fananas, F. J. Tetrahedron 2000, 56, 4597;
(d) Shvo, Y.; Green, R. J. Organomet. Chem. 2003, 675,
77.
10
N
N
O
12. Nitta, M.; Kobayashi, T. J. Chem. Soc., Perkin Trans. 1
1985, 1401.
11
12
4.0
2.0
93
88
N
N
O
13. (a) Baraldi, P. G.; Barco, A.; Benneti, S.; Manfredini, S.;
Simoni, D. Synthesis 1987, 276; (b) Trost, B. M.; Li, L.;
Guile, S. D. J. Am. Chem. Soc. 1992, 114, 8745.
14. Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; De Sarlo, F.
Tetrahedron Lett. 1990, 31, 3351.
O
O
N
O
N CH3
CH3
a Isolated yields.
15. Zimmer, R.; Reissig, H. U. J. Org. Chem. 1992, 57, 339.
16. (a) Patra, A.; Bandyopadhyay, M.; Mal, D. Tetrahedron
Lett. 2003, 44, 2355; (b) Iyer, S.; Kulkarni, G. M. Synth.
Commun. 2004, 34, 721.
cleavage of amine-N-oxide is outlined in Scheme 1, using
pyridine-N-oxide as the substrate. In the first step,
the reaction was assumed to proceed by loss of CO.
Then the oxygen of the amine-N-oxide coordinates to
Mo(CO)6 to give complex 3 and facilitate the N–O bond
cleavage. In a subsequent step, cleavage of the N–O
bond leads to the formation of the corresponding amine.
The notable advantages of the present procedure are the
ease of manipulation, the high yields, the mild reaction
conditions and the tolerance of several labile functional
groups.
17. A typical procedure for the deoxygenation of amine-N-
oxide is as follows: To a solution of 4-cyanopyridine-N-
oxide (120 mg, 1.0 mmol) in ethanol (10 mL) is added
Mo(CO)6 (264 mg, 1.0 mmol). The mixture was refluxed
for 2 h and monitored by TLC. After completion of the
reaction, the resulting mixture was concentrated under
reduced pressure, extracted with ether, concentrated and
the residue was purified by silica gel column chromato-
graphy (hexane/ethyl acetate = 1:1) to afford 4-cyanopyr-
idine (99 mg, 95%).
_
_
Mo(CO)6
O
O
Mo(CO)5
Mo(CO)5
N
N
O
N
_
_
+
+
CO
3
Scheme 1.