Full Papers
doi.org/10.1002/ejic.202100371
General procedure for the hydrosilylation of aldehydes 3into
alcohols 4
Keywords: Carbene ligands · Carbonyls · Hydrosilylation ·
Nanoparticles · Nickel
An oven dried Schlenk tube containing a stirring bar was loaded
with the nickel pre-catalyst 2a (9.6 mg, 0.02 mmol) and dry THF
(4 mL). To the resulting green solution was added the aldehyde
(1.00 mmol) and PhSiH3 (148 μL, 1.20 mmol), in this order, and the
[1] a) P. G. Andersson, I. J. Munslow (Eds.), Modern Reduction Methods,
Wiley, New York, 2008; b) P. A. Dub, T. Ikariya, ACS Catal. 2012, 2, 1718–
1741; c) J. March, Advanced Organic Chemistry: Reactions, Mechanisms
and Structures, Seventh Edition, Wiley-VCH, New York, 2013.
°
reaction mixture was stirred in a preheated oil bath at 40 C for 4 h.
The reaction mixture was then quenched by the addition of
methanol (2 mL) and 2 M NaOH (2 mL) and stirred for 2 h. After the
addition of water (5 mL), the product was extracted with
diethylether (3×10 mL). The combined organic layers were dried
over anhydrous MgSO4, filtered and concentrated under vacuum.
[2] a) B. Marciniec, H. Maciejewski, C. Pietraszuk, P. Pawluć in Hydro-
silylation: A Comprehensive Review on Recent Advances (Ed. B. Marciniec),
Springer, Heidelberg, 2009; b) D. Addis, S. Das, K. Junge, M. Beller,
Angew. Chem. Int. Ed. 2011, 50, 6004–6011; Angew. Chem. 2011, 123,
6128–6135; c) S. Werkmeister, K. Junge, M. Beller, Org. Process Res. Dev.
2014, 18, 289–302; d) K. Revunova, G. I. Nikonov, Dalton Trans. 2015, 44,
840–866; e) J. Pesti, G. L. Larson, Org. Process Res. Dev. 2016, 20, 1164–
1181; f) M. Oestreich, Angew. Chem. Int. Ed. 2016, 55, 494–499; Angew.
Chem. 2016, 128, 504; g) M. C. Lipke, A. L. Liberman-Martin, T. D. Tilley,
Angew. Chem. Int. Ed. 2017, 56, 2260–2294; Angew. Chem. 2017, 129,
2298–2332.
1
The conversion was determined by H NMR spectroscopy, and the
product purified by flash chromatography on silica gel using
petroleum ether/diethyl ether (80:20 and 50:50) mixtures. All
conversions and yields are the average value of at least two runs.
[3] a) A. Correa, O. G. Mancheno, C. Bolm, Chem. Soc. Rev. 2008, 37, 1108–
1117; b) C. Wang, X. F. Wu, J. L. Xiao, Chem. Asian J. 2008, 3, 1750–1770;
c) P. J. Chirik, in: Catalysis without Precious Metals, Wiley-VCH, 2010, pp.
83–110; d) M. S. Holzwarth, B. Plietker, ChemCatChem 2013, 5, 1650–
1679; e) R. M. Bullock, Science 2013, 342, 1054–1055; f) S. W. M. Crossley,
C. Obradors, R. M. Martinez, R. A. Shenvi, Chem. Rev. 2016, 116, 8912–
9000; g) J. R. Ludwig, C. S. Schindler, Chem 2017, 2, 313–316.
General procedure for the hydrosilylation of ketones 5into
alcohols 6
An oven dried Schlenk tube containing a stirring bar was loaded
with the nickel pre-catalyst 2a (4.8 mg, 0.01 mmol), KOt-Bu (1.1 mg,
0.01 mmol) and dry toluene (2 mL). To the resulting deep orange
solution was added the ketone (0.5 mmol) and PhSiH3 (74 μL,
0.6 mmol), in this order, and the reaction mixture was stirred in a
[4] Hydrosilylation of aldehydes and ketones using first-row transition
metals (Mn, Fe, Co, Ni, Cu), see: a) F. Jiang, D. Bezier, J.-B. Sortais, C.
Darcel, Adv. Synth. Catal. 2011, 353, 239–244; b) L. C. Misal Castro, D.
Bezier, J.-B. Sortais, C. Darcel, Adv. Synth. Catal. 2011, 353, 1279–1284;
c) E. Buitrago, F. Tinnis, H. Adolfsson, Adv. Synth. Catal. 2012, 354, 217–
222; d) D. Bezier, F. Jiang, T. Roisnel, J.-B. Sortais, C. Darcel, Eur. J. Inorg.
Chem. 2012, 1333–1337; e) L. P. Bheeter, M. Henrion, L. Brelot, C. Darcel,
M. J. Chetcuti, J.-B. Sortais, V. Ritleng, Adv. Synth. Catal. 2012, 354, 2619–
2624; f) L. Postigo, B. Royo, Adv. Synth. Catal. 2012, 354, 2613–2618; g) J.
Zheng, C. Darcel, J.-B. Sortais, Catal. Sci. Technol. 2013, 3, 81–84; h) A. J.
Ruddy, C. M. Kelly, S. M. Crawford, C. A. Wheaton, O. L. Sydora, B. L.
Small, M. Stradiotto, L. Turculet, Organometallics 2013, 32, 5581–5588;
i) Q. Niu, H. Sun, X. Li, H. F. Klein, U. Florke, Organometallics 2013, 32,
5235–5238; j) V. K. Chidara, G. Du, Organometallics 2013, 32, 5034–5037;
k) V. Cesar, L. C. Misal Castro, T. Dombray, J.-B. Sortais, C. Darcel, S.
Labat, K. Miqueu, J. M. Sotiropoulos, R. Brousses, N. Lugan, G. Lavigne,
Organometallics 2013, 32, 4643–4655; l) S. J. Kraft, R. H. Sanchez, A. S.
Hock, ACS Catal. 2013, 3, 826–830; m) J. Zheng, S. Elangovan, D. A.
Valyaev, R. Brousses, V. César, J.-B. Sortais, C. Darcel, N. Lugan, G.
Lavigne, Adv. Synth. Catal. 2014, 356, 1093–1097; n) H. Zhao, H. Sun, X.
Li, Organometallics 2014, 33, 3535–3539; o) Z. Zuo, H. Sun, L. Wang, X.
Li, Dalton Trans. 2014, 43, 11716–11722; p) D. Kumar, A. P. Prakasham,
L. P. Bheeter, J.-B. Sortais, M. Gangwar, T. Roisnel, A. C. Kalita, C. Darcel,
P. Ghosh, J. Organomet. Chem. 2014, 762, 81–87; q) H. Zhou, H. Sun, S.
Zhang, X. Li, Organometallics 2015, 34, 1479–1486; r) F. S. Wekesa, R.
Arias-Ugarte, L. Kong, Z. Sumner, G. P. McGovern, M. Findlater, Organo-
metallics 2015, 34, 5051–5056; s) M. A. Nesbit, D. L. M. Suess, J. C. Peters,
Organometallics 2015, 34, 4741–4752; t) C. Ghosh, T. K. Mukhopadhyay,
M. Flores, T. L. Groy, R. J. Trovitch, Inorg. Chem. 2015, 54, 10398–10406;
u) B. Xue, H. Sun, X. Li, RSC Adv. 2015, 5, 52000–52006; v) S. Huang, H.
Zhao, X. Li, L. Wang, H. Sun, RSC Adv. 2015, 5, 15660–15667; w) Y. Wei,
S.-X. Liu, H. Mueller-Bunz, M. Albrecht, ACS Catal. 2016, 6, 8192–8200;
x) T. C. Jung, G. Argouarch, P. van de Weghe, Catal. Commun. 2016, 78,
52–54; y) M. Rocquin, V. Ritleng, S. Barroso, A. M. Martins, M. J. Chetcuti,
J. Organomet. Chem. 2016, 808, 57–62; z) X. Yu, F. Zhu, D. Bu, H. Lei, RSC
Adv. 2017, 7, 15321–15329; aa) B. Xue, H. Sun, Q. Niu, X. Li, O. Fuhr, D.
Fenske, Catal. Commun. 2017, 94, 23–28; ab) S. Ren, S. Xie, T. Zheng, Y.
Wang, S. Xu, B. Xue, X. Li, H. Sun, O. Fuhr, D. Fenske, Dalton Trans. 2018,
47, 4352–4359; ac) Y. Li, J. A. Krause, H. Guan, Organometallics 2018, 37,
2147–2158; ad) X. Yang, C. Wang, Chem. Asian J. 2018, 13, 2307–2315;
ae) X. Frogneux, F. Borondics, S. Lefrançois, F. D’Accriscio, C. Sanchez, S.
Carenco, Catal. Sci. Technol. 2018, 8, 5073–5080; af) F. Ritter, D.
Mukherjee, T. P. Spaniol, A. Hoffmann, J. Okuda, Angew. Chem. Int. Ed.
2019, 58, 1818–1822; Angew. Chem. 2019, 131, 1832–1836; ag) D. G. A.
Verhoeven, J. Kwakernaak, M. A. C. van Wiggen, M. Lutz, M.-E. Moret,
Eur. J. Inorg. Chem. 2019, 660–667; ah) Á. Raya-Barón, P. Oña-Burgos, I.
Fernández, ACS Catal. 2019, 9, 5400–5417; ai) O. Martínez-Ferraté, B.
Chatterjee, C. Werlé, W. Leitner, Catal. Sci. Technol. 2019, 9, 6370–6378;
°
preheated oil bath at 100 C for 24 h. The reaction mixture was then
quenched by the addition of methanol (2 mL) and 2 M NaOH
(2 mL) and stirred for 2 h. After the addition of water (5 mL), the
product was extracted with diethylether (3×10 mL). The combined
organic layers were dried over anhydrous MgSO4, filtered and
concentrated under vacuum. The conversion was determined by 1H
NMR spectroscopy and GC analysis, and the product purified by
flash chromatography on silica gel using petroleum ether / ethyl
acetate (80:20 and 50:50) mixtures. All conversions and yields are
the average value of at least two runs.
Acknowledgements
The CNRS, the University of Strasbourg, and the Agence Nationale
de la Recherche (ANR 2010 JCJC 716 1) are acknowledged for
supporting and funding partially this work (post-doc of S.
Shahane). The Institut Universitaire de France is acknowledged for
its support (V.R.), and the Région Grand Est for the doctoral
fellowship of F. Ulm. This work has also benefitted from support
provided by the University of Strasbourg Institute for Advanced
Study (USIAS) for a Fellowship, within the French national
program “Investment for the future” (IdEx-Unistra) (C.M. and C.P.-
H.) Mrs. Corinne Bailly and Dr. Lydia Karmazin are acknowledged
for the X-ray structural determinations. Mrs. Alexandra Sutter
(ICPEES) is gratefully thanked for her assistance with DLS measure-
ments and discussion. Dr. Emeric Wasielewski (LIMA) is thanked
for his assistance with NMR experiments.
Conflict of Interest
The authors declare no conflict of interest.
Eur. J. Inorg. Chem. 2021, 1–9
7
© 2021 Wiley-VCH GmbH
��
These are not the final page numbers!