Organometallics
Article
−
1
IR (KBr, cm ): 3063 (m; νC−H (aromatic)), 2979 (s; νC−H (aliphatic)), 1443
(
m; ν
), 829 (s; νP−F), 774 (m; ν
).
CC (aromatic)
C−H(aromatic)
5
Synthesis of Complexes 3−4. The solid [(η -Cp*)IrCl(μ-Cl)]
2
(
0.05 g, 0.1 mmol) was mixed with a ligand out of L1−L2 (0.2 mmol)
AUTHOR INFORMATION
Corresponding Author
3
■
dissolved in CH OH (15 cm ) and the mixture stirred for 10 h at
3
room temperature. The resulting yellow solution was filtered. After a
work up as described for 1−2, single crystals of 3−4 were obtained by
the diffusion of diethyl ether into their solution (4 cm ) made in a
mixture (1:4) of CH OH and CH CN.
Compound 3: yield 0.136 g, ∼82%. Anal Calcd for C H ClIrS ·
PF ]: C, 43.39; H, 4.01; found, C, 43.53; H, 4.14. Mp 260 °C. H
6
3
3
3
Notes
30
33
2
1
The authors declare no competing financial interest.
[
NMR (CD CN, 25 °C vs Me Si) δ (ppm): 1.39 (s, 15H, H of
3
4
Me(Cp)), 4.31−4.38 (m, 4H, H , H ), 7.15−7.28 (m, 4H, H7−10),
ACKNOWLEDGMENTS
5
12
■
7
.31−7.57 (m, 6H, H , H
), 7.91−8.21 (m, 4H, H , H ).
1
−2
15−16
3
14
We thank Professor B. Jayaram for computational facilities. We
also thank Department of Science and Technology, New Delhi
India) for the following: research project no. SR/S1/IC-40/
2010, partial financial assistance (under the FIST program) for
the single crystal X-ray diffractometer and mass spectral
facilities at IIT Delhi. O.P. and H.J. thank University Grants
Commission (India) and K.N.S. Council of Scientific and
Industrial Research (India) for the award of Junior/Senior
Research Fellowships.
1
3
1
C{ H} NMR (CDCl , 25 °C vs Me Si) δ (ppm): 8.09 (C of
3
4
Me(Cp*), 35.8 (C , C ), 95.0 (C of Cp*), 129.0 (C , C ), 129.8 (C ,
5
12
1
16
3
(
C ), 131.7 (C , C ), 132.3 (C , C ), 133.6 (C , C ), 134.1 (C , C ),
1
4
2
15
7
10
8
9
4
13
+
1
35.8 (C , C ). HR-MS (CH CN) [M] (m/z) = 685.1331; calulated
value for C H ClIrS = 685.1326 (δ: −0.6 ppm). IR (KBr, cm ):
092 (m; ν
6 11 3
−1
30
33
2
3
), 2957 (s; ν
), 1444 (m;
C−H (aromatic)
C−H (aliphatic)
ν
), 831 (s; νP−F), 747 (m; νC−H (aromatic)).
Compound 4: yield 0.157 g, ∼85%. Anal Calcd for C H ClIrSe ·
CC (aromatic)
30
33
2
1
[
PF ]: C, 38.99; H, 3.60; found, C, 38.79; H, 3.82. Mp 242 °C. H
6
NMR (CDCl , 25 °C vs Me Si) δ (ppm): 1.30 (s, 15H, H of
3
4
Me(Cp)), 4.40−5.43 (m, 4H, H , H ), 7.17−7.31 (m, 4H, H7−10),
5
12
REFERENCES
■
7.45−7.63 (m, 6H, H , H
), 8.16−8.18 (m, 4H, H , H ).
1
−2
15−16
3
14
1
3
1
(1) Anastas, P. T.; Warner, J. Green Chemistry: Theory and Practice;
Oxford University Press: Oxford, U.K., 1998.
2) (a) Pagliaro, M., Rossi, M. The Future of Glycerol; 2nd ed.; RSC
Publishing: Cambridge, U.K., 2010. (b) Diaz-Alvarez, A. E.; Francos,
C{ H} NMR (CDCl , 25 °C vs Me Si) δ (ppm): 8.37 (C of
3
4
Me(Cp*), 36.2 (C , C ), 93.9 (C of Cp*), 129.3 (C , C ), 129.9 (C ,
5
12
1
16
2
(
C ), 131.0 (C , C ), 131.9 (C , C ), 132.2 (C , C ), 133.3 (C , C ),
1
5
7
10
8
9
4
13
3
14
7
7
1
1
2
35.1 (C , C ). Se{ H} NMR (CDCl , 25 °C vs Me Se) δ (ppm):
6 11 3 2
+
J.; Lastra-Barreira, B.; Crochet, P.; Cadierno, V. Chem. Commun. 2011,
57.7 (Se1), 339.0 (Se2) HR-MS (CH CN) [M] (m/z) = 781.0215;
3
4
7, 6208. (c) Wolfson, A.; Dlugy, C.; Shotland, Y. Environ. Chem. Lett.
2007, 5, 67.
3) (a) Sheldon, R. A. Chem. Commun. 2008, 3352. (b) Gallezot, P.
Green Chem. 2007, 9, 295.
4) (a) Armaroli, N.; Balzani, V. Angew. Chem., Int. Ed. 2007, 46, 52.
b) Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Angew. Chem., Int. Ed.
2007, 46, 7164. (c) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007,
07, 2411.
5) Gu, Y. L.; Jerome, F. Green Chem. 2010, 12, 1127.
(6) (a) Farnetti, E.; Kaspar, J.; Crotti, C. Green Chem. 2009, 11, 704.
(b) Diaz-Alvarez, A. E.; Crochet, P.; Cadierno, V. Catal. Commun.
011, 13, 91. (c) Tavor, D.; Sheviev, O.; Dlugy, C.; Wolfson, A. Can. J.
calulated value for C H ClIrSe = 781.0219 (δ: 0.5 ppm). IR (KBr,
3
0
33
2
−1
cm ): 3075 (m; νC−H (aromatic)), 2942 (s; νC−H (aliphatic)), 1443 (m;
(
ν
), 830 (s; νP−F), 739(m; νC−H (aromatic)).
Procedure for the Catalytic Transfer Hydrogenation of
CC (aromatic)
(
Carbonyl Compounds. A capped round-bottomed flask containing a
(
stirrer bar was charged with the solution of a substrate (2 mmol) made
3
in glycerol (8 cm ), KOH (3.0 mmol), and a complex from 1 to 4 (1
1
(
mol %). The mixture was heated at 120 °C for an appropriate time as
given in Table 1. After completion of the reaction, the reaction mixture
3
was cooled to room temperature and mixed with water (20 cm ). The
3
mixture was extracted with diethyl ether (3 × 20 cm ), and the solvent
2
from the extract was removed on a rotary evaporator resulting in a
Chem. 2010, 88, 305.
(7) (a) Zassinovich, G.; Mestroniand, G.; Gladiali, S. Chem. Rev.
992, 92, 1051. (b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997,
0, 97. (c) Everaere, K.; Mortreux, A.; Carpentier, J. F. Adv. Synth.
semisolid. It was mixed with silica gel and the mixture filled in a short
3
3
column (∼8 cm in length). The column was washed with ∼50 cm of
diethyl ether. All of the eluates from the column were mixed, and
solvent from the mixture was evaporated off on a rotary evaporator to
isolate the product as liquid or solid. The yields of these isolated
1
3
Catal. 2003, 345, 67. (d) Clapham, S. E.; Hadzovic, A.; Morris, R. H.
Coord. Chem. Rev. 2004, 248, 2201. (e) Gladiali, S.; Alberico, E. Chem.
Soc. Rev. 2006, 35, 226. (f) Samec, J. S. M.; Backvall, J. E.; Andersson,
P. G.; Brandt, P. Chem. Soc. Rev. 2006, 35, 237. (h) Ikariya, T.; Blacker,
A. J. Acc. Chem. Res. 2007, 40, 1300. (i) Wang, C.; Wu, X.; Xiao, J.
Chem.Asian J. 2008, 3, 1750. (j) Noyori, R.; Yamakawa, M.;
Hashiguchi, S. J. Org. Chem. 2001, 66, 7931.
(8) (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyon, R. J.
Am. Chem. Soc. 1995, 117, 7562. (b) Uematsu, N.; Fujii, A.;
Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118,
1
products were calculated and reported in Table 1. The H NMR
authenticating these products are reported in Supporting Information
(
Figures S11−S17).
Hg Poisoning Test. An excess of Hg (Hg/Rh/Ir: 400:1) was taken
in a reaction flask. The TH reaction of benzaldehyde (1.0 mmol) with
glycerol (5 mL) using 2 or 4 (1 mol %) as catalyst was carried out in
1
the flask under optimum conditions. An ∼92% conversion (with H
NMR) was observed after 5−6 h of reaction.
PPh Poisoning Test. To the TH reaction of benzaldehyde with
3
4
916. (c) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R.
glycerol (5 mL), PPh3 (5 mol %) was added under optimum
conditions after the addition of catalyst 2 or 4 (1 mol %). After 5−6 h
of reaction, the conversion was found to be ∼94%.
J. Am. Chem. Soc. 1996, 118, 2521. (d) Ikariya, T.; Murata, K.; Noyori,
R. Org. Biomol. Chem. 2006, 4, 393. (e) Haack, K. J.; Hashiguchi, S.;
Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. 1997, 36, 285.
(
f) Hashiguchi, S.; Fujii, A.; Haack, K. J.; Matsumura, K.; Ikariya, T.;
Noyori, R. Angew. Chem., Int. Ed. 1997, 36, 288.
9) (a) Farnetti, E.; Kaspar, J.; Crotti, C. Green Chem. 2009, 11, 704.
b) Wolfson, A.; Dlugy, C.; Shotland, Y.; Tavor, D. Tetrahedron Lett.
009, 50, 5951. (c) Tavor, D.; Popov, S.; Dlugy, C.; Wolfson, A. Org.
ASSOCIATED CONTENT
■
(
*
S
Supporting Information
(
2
Crystal data and refinement parameters, bond lengths and
angles, HOMO−LUMO energy gap and partial charges,
distances of noncovalent interactions, noncovalent interactions,
NMR and mass spectra, and CIF (CCDC numbers: 971499,
Commun. 2010, 3, 70. (d) Cravotto, G.; Orio, L.; Gaudino, E. C.;
Martina, K.; Tavor, D.; Wolfson, A. ChemSusChem 2011, 4, 1130.
(10) (a) Azua, A.; Mata, J. A.; Peris, E.; Lamaty, F.; Martinez, J.;
Colacino, E. Organometallics 2012, 31, 3911. (b) Azua, A.; Mata, J. A.;
9
71500, 971501, and 971502 (for 1 to 4, respectively). This
2
542
dx.doi.org/10.1021/om500149n | Organometallics 2014, 33, 2535−2543