Catalysis Science & Technology
Paper
5
0–100 °C for 23 h. The autoclave was then allowed to
Notes and references
cool over the course of 1 h before venting at room tempera-
ture. The percent conversions were determined by H NMR
spectroscopy.
Method B: liquid amide or N-acyloxazolidinones (9a and 9b).
The atmosphere of a stainless steel autoclave was purged
1
1 P. D. Bailey, T. J. Mills, R. Pettecrew and R. A. Price, in
Comprehensive Organic Functional Group Transformations II:
5.06 – Amides, ed. A. R. Katritzky and R. J. K. Taylor, Elsevier,
Oxford, 2005, pp. 201–294.
with H for 10 min at room temperature. A solution of the
amide or N-acyloxazolidinone (0.2–20 mmol, 10–1000 equiv.)
in THF (1.0 mL), prepared under Ar, was then added by a
2 (a) Modern Amination Methods, ed. A. Ricci, Wiley-VCH, Weinheim,
2000; (b) Modern Reduction Methods, ed. P. G. Andersson
and I. J. Munslow, Wiley-VCH, Weinheim, 2008.
2
cannula under H pressure followed by a 4.0 mL THF wash.
3 J. Seyden-Penne, Reductions by the Aumino- and Borohydrides
in Organic Synthesis, Wiley, New York, 2nd edn, 1997.
4 M. Szostak, M. Spain, A. J. Eberhart and D. J. Procter, J. Am.
Chem. Soc., 2014, 136, 2268.
2
The catalyst–NaBH mixture, prepared above, was then added
4
2
by cannula under H pressure followed by a 2.0 mL THF
wash. The autoclave was then pressurized to 50 atm H . The
2
reaction mixture was stirred at 50–100 °C for 23–47 h. The
autoclave was then allowed to cool over the course of 1 h
before venting at room temperature. The percent conversions
5 P. A. Dub and T. Ikariya, ACS Catal., 2012, 2, 1718–1741.
6 Heterogeneous amide hydrogenation: (a) B. Wojcik and
H. Adkins, J. Am. Chem. Soc., 1934, 56, 2419–2424; (b)
J. C. Sauer and H. Adkins, J. Am. Chem. Soc., 1938, 60,
1
were determined by H NMR spectroscopy.
4
02–406; (c) F. Galinovsky and E. Stern, Ber. Dtsch. Chem.
Spectroscopic identification of products
Ges. A/B, 1943, 76, 1034–1038; (d) A. Guyer, A. Bieler and
G. Gerliczy, Helv. Chim. Acta, 1955, 38, 1649–1654; (e)
H. S. Broadbent and W. J. Bartley, J. Org. Chem., 1963, 28,
All hydrogenation products except 9a and 9b are known.
1
9
a: H NMR (599. 926 MHz, CDCl , 27 °C): δ 0.71 (3H, d,
3
2
345–2347; ( f ) I. D. Dobson, BP Chemicals Limited; Patent
J = 7.0 Hz, CH
.0 Hz, CH ), 1.73 (1H, m, CH), 2.53 (1H, m, CH), 2.70
1H, m, CH), 2.95 (1H, m, CH), 3.23 (1H, bs, OH), 3.60 (3H,
m, 3 CH), 5.72 (1H, bs, NH), 7.17–7.26 (5H, m, 5 aromatic
3 3
), 0.78 (3H, d, J = 6.5 Hz, CH ), 1.21 (3H, d, J =
EP0286280, 1988, p. 11; (g) C. Hirosawa, N. Wakasa and
T. Fuchikami, Tetrahedron Lett., 1996, 37, 6749–6752; (h)
A. A. Smith, P. Dani, P. D. Higginson and A. J. Pettman,
Avantium Internation B.V., Patent WO2005066112A1,
6
3
(
13
1
CH). C{ H} NMR (175.969 MHz, CDCl
8.5 (CH), 19.2 (CH), 28.6 (CH), 40.4 (CH), 43.9 (CHNH), 56.9
aromatic), 63.6 (CHOH), 126.2 (aromatic), 128.3 (aromatic),
3
, 27 °C): δ 17.9 (CH),
2
005, p. 34; (i) G. Beamson, A. J. Papworth, C. Phillips,
1
(
A. M. Smith and R. Whyman, Adv. Synth. Catal., 2010, 352,
869–883; ( j) G. Beamson, A. J. Papworth, C. Phillips,
A. M. Smith and R. Whyman, J. Catal., 2010, 269, 93–102; (k)
G. Beamson, A. J. Papworth, C. Phillips, A. M. Smith and
R. Whyman, J. Catal., 2011, 278, 228–238; (l) R. Burch,
C. Paun, X. M. Cao, P. Crawford, P. Goodrich, C. Hardacre,
P. Hu, L. McLaughlin, J. Sà and J. M. Thompson, J. Catal.,
1
15
1
28.8 (aromatic), 139.7 (aromatic), 176.5 (CO). H– N
+
HSQC (498.117 MHz, CDCl , 27 °C): δ 123. HRMS (ESI ) m/z
3
+
2
calculated for C15H24NO (M + H) : 250.18. Found: 250.1802.
Difference (ppm): 0.75. 9a is not stable for prolonged periods
in solution.
1
9
b: H NMR (599. 926 MHz, CDCl
3
, 27 °C): δ 0.79 (3H,
2
011, 283, 89–97; (m) M. Stein and B. Breit, Angew. Chem.,
d, J = 7.2 Hz, CH
3
), 1.21 (3H, d, J = 6.6 Hz, CH ), 2.43 (1H,
3
Int. Ed., 2013, 52, 2231–2234; (n) J. Coetzee, H. G. Manyar,
C. Hardacre and D. J. Cole-Hamilton, ChemCatChem,
sex, J = 6.6 Hz, CH), 2.70 (1H, dd, J = 6.6 Hz, CH), 2.93 (1H,
dd, J = 8.4 Hz, CH), 3.91 (1H, bs, OH), 4.19 (1H, m, CH), 4.75
2
013, 5, 2843–2847.
(
1
1H, bs, NH), 5.38 (1H, d, J = 7.8 Hz, CH), 7.15–7.33 (10H, m,
0 aromatic CH). C{ H} NMR (150.868 MHz, CDCl , 27 °C):
3
1
3
1
7 Homogeneous amide hydrogenation: (a) M. Kilner,
D. V. Tyers, S. P. Crabtree and M. A. Wood, Davy Process
Technology Limited, UK, Patent WO03093208A1, 2003, p. 23;
δ 14.5 (CH), 17.7 (CH), 40.5 (CH), 43.8 (CH), 50.9 (CHNH),
6.7 (CHOH), 126.3 (aromatic), 126.4 (aromatic), 127.4 (aromatic),
28.0 (aromatic), 128.4 (aromatic), 128.9 (aromatic), 139.7
7
1
(
b) A. A. N. Magro, G. R. Eastham and D. Cole-Hamilton,
1
15
Chem. Commun., 2007, 3154–3156 Amendment: D. L. Dodds
and D. J. Cole-Hamilton, Catalytic reduction of amides
avoiding the use of LiAlH and B2H6, in Sustainable
4
(aromatic), 140.7 (aromatic), 176.4 (CO). H– N HSQC
+
(
3
599.925 MHz, CDCl , 27 °C): δ 127. HRMS (ESI ) m/z calcu-
+
lated for C H NO (M + Na) : 320.1621. Found: 320.1621.
1
9
23
2
Catalysis: Challenges and Practices for the Pharmaceutical and
Fine Chemical Industries, ed. P. J. Dunn, K. K. Hii, M. J. Krische
and M. T. Williams, John Wiley & Sons, Inc., New York, 2013,
ch. 1, pp. 1–36(c) G. R. Eastham, D. J. Cole-Hamilton and
A. A. N. Magro, Lucite International UK Limited, UK, Patent
WO2008035123A2, 2008, p. 36; (d) J. Coetzee, D. L. Dodds,
J. Klankermayer, S. Brosinski, W. Leitner, A. M. Z. Slawin
Difference (ppm): 0.01.
Acknowledgements
This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC), the
GreenCentre Canada and the University of Alberta. We grate-
fully appreciate the assistance of Mark Miskolzie and Nupur
Dabral at the University of Alberta High Field NMR labora-
tory. We acknowledge the R.A. awarded to J. M. J. by the
University of Alberta Department of Chemistry.
and D. J. Cole-Hamilton, Chem.
– Eur. J., 2013, 19,
11039–11050; (e) M. Ito, L. W. Koo, A. Himizu, C. Kobayashi,
A. Sakaguchi and T. Ikariya, Angew. Chem., Int. Ed., 2009, 48,
1324–1327; ( f ) M. Ito, T. Ootsuka, R. Watari, A. Shiibashi,
This journal is © The Royal Society of Chemistry 2014
Catal. Sci. Technol.