from aromatic amines (or even nitroarenes) in the absence
of transition-metal catalyst is rare.14
Scheme 1. Different Pathways for the Amide Bond Formation
Aromatic amines are in general synthesized from the corre-
sponding nitroarenes by using reducing reagents.15 The direct
use of stable, cheap and easily handled nitroarenes with
alcohols instead of aromatic amines is an attractive approach
for CÀN bond formation. However, external reducing re-
agents such as hydrogen and transition-metals are necessary in
most cases.16 Recently, we and others developed various cata-
lytic systems for amine and imine formation between alcohols
and nitroarenes.17 The nitroarenes were reduced to amines in
situ using the borrowing hydrogen strategy (or hydrogen
transfer method),18 and no external oxidants or reducing
reagents were added to the reaction mixture. We also dis-
covered an unusual transition-metal-free direct amination of
simple cycloalkanes with nitroarenes, and secondary amines
were formed under oxidative conditions.19 As a continuing
effort to construct CÀN bonds using nitroarenes directly,
herein, we wish to report a transition-metal-free direct ami-
dation of alcohols with aromatic nitroarenes (Scheme 1, eq 3).
Our initial investigations were focused on the amidation of
benzyl alcohol (1a) with nitrobenzene (2a), and the results are
summarized in Table 1. When nitrobenzene was reacted with
benzyl alcohol in chlorobenzene in the absence of peroxide, no
N-phenylbenzamide (3a) was formed as determined by
GCÀMS and 1H NMR methods (Table 1, entry 1). Instead,
azoxybenzene (PhNdNOPh) was obtained in 48% yield
together with large amount of benzaldehyde.20 The choice
of peroxides was crucial for this reaction. Various peroxides
were investigated under an atmosphere of air.21 tert-Butyl
hydroperoxide (TBHP), cumene hydroperoxide, p-benzoqui-
none, and benzoyl peroxide were inefficient for this kind
of transformation (Table 1, entries 2À5). When dicumyl
peroxide was used, the desired product was formed in 63%
yield (Table 1, entry 6). Among the various peroxides
amide.8 This direct catalytic conversion of alcohols and
amines into amides is a particularly desirable reaction
because of its high atom efficiency and has inspired several
other research groups to further develop the reactions
using transition-metal catalysts with9 or without hydrogen
acceptors.10 However, special handling of expensive metal
complexes and ligands is required in many cases.11 Kobayashi
et al. developed a heterogeneous catalytic system for
amide synthesis. Gold or even very cheap iron, nickel, and
cobalt nanoparticles were used as catalysts, and the catalysts
could be recovered and reused several times without loss of
activity.12,13 However, in most cases, aliphatic or benzylic
amines were used as starting materials. Amide formation
(8) (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007,
317, 790. (b) Gnanprakasam, B.; Milstein, D. J. Am. Chem. Soc. 2011,
133, 1682.
(9) (a) Naota, T.; Murahashi, S. I. Synlett 1991, 693. (b) Fujita, K.;
Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Org. Lett.
2004, 6, 2785. (c) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J.
€
Org. Lett. 2009, 11, 2667. (d) Zweifel, T.; Naubron, J. V.; Grutzmacher,
H. Angew. Chem., Int. Ed. 2009, 48, 559. (e) Ohmura, R.; Takahata, M.;
(15) (a) Lawrence, S. A. In Amines: Synthesis Properties and Applica-
tions; Cambridge University Press: Cambridge, 2004. (b) Ono, N. The Nitro
Group in Organic Synthesis; Wiely-VCH: New York, 2011.
€
Togo, H. Tetrahedron Lett. 2010, 51, 4378. (f) Trincado, M.; Kuhlein,
€
K.; Grutzmacher, H. Chem.;Eur. J. 2011, 17, 11905.
(10) (a) Nordstøm, L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc.
2008, 130, 17672. (b) Ghosh, S. C.; Muthaiah, S.; Zhang, Y.; Xu, X. Y.;
Hong, S. H. Adv. Synth. Catal. 2009, 351, 2643. (c) Shi, F.; Tse, M. K.;
(16) For amination of nitroarenes with alcohols or aldehydes using
molecular hydrogen as reductant, see: (a) Yamane, Y.; Liu, X.; Hamasaki, A.;
Ishida, T.; Haruta, M.; Yokoyama, T.; Tokunaga, M. Org. Lett. 2009,
11, 5162. (b) Sreedhar, B.; Reddy, P.; Devi, D. J. Org. Chem. 2009, 74,
8806. (c) Gelman, F.; Blum, J.; Avnir, D. New J. Chem. 2003, 27, 205.
(d) Hu, L.; Cao, X. Q.; Ge, D. H.; Hong, H. Y.; Guo, Z. Q.; Chen, L.;
Sun, X. H.; Tang, J. X.; Zheng, J. W.; Lu, T. M.; Gu, H. W. Chem.;Eur.
J. 2011, 17, 14283.
€
Cui, X. J.; Gordes, D.; Michalik, D.; Thurow, K.; Deng, Y. Q.; Beller,
M. Angew. Chem., Int. Ed. 2009, 48, 5912. (d) Muthaiah, S.; Ghosh,
S. C.; Jee, J. E.; Cheng, C.; Zhang, J.; Hong, S. H. J. Org. Chem. 2010, 75,
3002. (e) Zhang, Y.; Chen, C.; Ghosh, S. C.; Li, Y. X.; Hong, S. H.
Organometallics 2010, 29, 1374. (f) Dam, J. H.; Osztrovszky, G.;
Norgstrøm, L. U.; Madsen, R. Chem.;Eur. J. 2010, 16, 6820. (g) Nova,
A.; Balcells, D.; Schley, N. D.; Dobereiner, G. E.; Crabtree, R. H.;
Eisenstein, O. Organometallics 2010, 29, 6548. (h) Ghosh, S. C.; Hong,
S. H. Eur. J. Org. Chem. 2010, 4266. (i) Zhang, J.; Senthilkumar, M.;
Ghosh, S. C.; Hong, S. H. Angew. Chem., Int. Ed. 2010, 49, 6391. (j) Zhu,
M. W.; Fujita, K.; Yamaguchi, R. Org. Lett. 2010, 12, 1336. (k) Zeng,
H. X.; Guan, Z. B. J. Am. Chem. Soc. 2011, 133, 1159. (l) Li, H. X.;
Wang, X. T.; Huang, F. Organometallics 2011, 30, 5233. (m) Schley,
N. D.; Dobereiner, G. E.; Crabtree, R. H. Organometallics 2011, 30,
4174. (n) Prades, A.; Peris, E.; Albrecht, M. Organometallics 2011, 30,
1162. (o) Chen, C.; Zhang, Y.; Hong, S. H. J. Org. Chem. 2011, 76,
10005.
(17) (a) Feng, C.; Liu, Y.; Peng, S. M.; Shuai, Q.; Deng, G. J.; Li, C.-J.
Org. Lett. 2010, 12, 4888. (b) Liu, Y.; Chen, W.; Feng, C.; Deng, G. J.
Chem.;Asian J. 2011, 6, 1142. (c) Luo, J. Y.; Wu, M. Y.; Xiao, F. H.;
Deng, G. J. Tetrahedron Lett. 2011, 52, 2706. (d) Cui, X. J.; Zhang, Y.;
Shi, F.; Deng, Y. Q. Chem.;Eur. J. 2011, 17, 2587. (e) Zanardi, A.;
Mata, J. A.; Peris, E. Chem.;Eur. J. 2011, 47, 6981. (f) Cano, R.;
ꢀ
Ramon, D. J.; Yus, M. J. Org. Chem. 2011, 76, 5574. (g) Tang, C. H.; He,
L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Chem.;Eur. J. 2011, 17,
7172.
(18) For reviews, see: (a) Watson, A.; Williams, J. M. J. Science 2010,
329, 635. (b) Whittlesey, M. K.; Williams, J. M. J. Dalton Trans. 2009, 5,
ꢀ
(11) For reviews, see: (a) Milstein, D. Top. Catal. 2010, 53, 915. (b)
Chen, C.; Hong, S. H. Org. Biomol. Chem. 2011, 9, 20.
753. (c) Guillena, G.; Ramon, D. G.; Yus, M. Chem. Rev. 2010, 110,
1611.
ꢀ
(12) Soule, J. F.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc.
(19) Deng, G. J.; Chen, W. W.; Li, C.-J. Adv. Synth. Catal. 2009, 351,
353.
2011, 133, 18850.
(13) For other supported catalytic systems, see: (a) Shimizu, K.;
Ohshima, K.; Satsuma, A. Chem.;Eur. J. 2009, 15, 9977.
(14) For an example of amide synthesis from alcohols and aromatic
amines using gold/DNA catalyst, see:Wang, Y.; Zhu, D. P.; Tang, L.;
Wang, S. J.; Wang, Z. Y. Angew. Chem., Int. Ed. 2011, 50, 8917.
(20) The reduction of nitrobenzene in acidic media affords phenylhy-
droxylamine, whereas reduction in basic media affords azoxy com-
pound. See: Patai, S. In The Chemistry of Amines, Nitroso, Nitro and
Related Groups; John Wiley & Sons: Chichester, U. K., 1996.
(21) Caution! Be careful when using TBP at these temperatures.
Org. Lett., Vol. 14, No. 4, 2012
985